Sweepless Time-Dependent Transport Calculations using the Staggered Block Jacobi Method

G. Davidson and E.W. Larsen

Abstract
The Staggered Block Jacobi method for time-dependent transport problems is a sweepless and inherently parallel transport method. It is highly accurate in thick-diffusive problems and unconditionally stable when combined with the lumped linear discontinuous finite element spatial discretization.

Introduction
The linear Boltzmann transport equation describes a rarified field of neutral particles streaming through and interacting with a background material.

The transport equation:
\[
\begin{align*}
\frac{1}{v} \frac{\partial}{\partial t} \phi + \mu (\psi - \phi) + \Sigma_q \phi + Q = 0
\end{align*}
\]

- Streaming Term
- Collision Term
- Source

The time-dependent transport equation is useful for a variety of problems including astrophysics simulations and inertial confinement fusion.

Classification of Time Discretizations
Currently, there were two major classifications of time discretizations:

- Conditionally stable discretizations:
 - Typically fast for a single time step
 - Often scale linearly with processors
 - Require very small \(\Delta t \) for stability
 - Examples include Explicit and Crank-Nicolson

- Unconditionally stable discretizations
 - Typically require non-linear solvers
 - Require sweeps, which limits parallel scalability
 - Example: Implicit

Mesh Sweeps
Traditionally deterministic transport problems have been solved using a mesh-sweep algorithm:

\[
\begin{align*}
&\text{Mesh-sweep}: 3 \rightarrow 2 \rightarrow 1 \rightarrow 3 \\
&\text{Mesh-sweep algorithm: Require that each cell be solved in a specific sequence. This limits the parallel efficiency of the transport algorithm.}
\end{align*}
\]

Additionally, transport methods employing mesh-sweeps typically iterate over the scattering source. This requires diffusion synthetic acceleration and Krylov solvers, further complicating the design, implementation, and parallelization of the transport method.

Acknowledgements
This research was funded by the Computational Science Graduate Fellowship administered by the Krell Institute, the Los Alamos National Laboratory under U.S. government contract DE-AC52-06NA25396, and the Center for Radiation Shock Hydrodynamics at the University of Michigan.

Staggered Block Jacobi Method (SBJ)

Staggered Block Jacobi Concept: Invert a two-cell block (1-D) using incident information lagged to the previous time step. Only angular fluxes on the two-cell interface are retained.

This method should be accurate where the solution does not change greatly during a time step (i.e., where the wave speed is slow).

Increasing Accuracy with Iterations
We can improve the accuracy of the SBJ scheme using iterations along with sweeps:
1. Perform a stretched sweep to capture the solution in thin streaming regions
2. Perform a SBJ solve to capture the solution in thick diffusive regimes
3. Use the results from the SBJ as the incoming flux on each block
4. Repeat steps 2 and 3 until the desired accuracy is achieved.

Results
- Mesh width: 1.0 cm
- Number of zones: 100
- \(\Sigma_q = 10^{-7} \times 10^{-5} \)
- \(Q = 1.0 \) in first cell, \(Q = 0.0 \) elsewhere
- \(v = 1.0 \) cm/s

We calculate the relative error using:

Using Sweeps to Increase Accuracy

SBJ is accurate when the particle wave moves less than one cell per time step. Otherwise, accuracy degrades. We can improve accuracy using a single sweep with a lagged scattering source.

The term \(\frac{1}{c} (c = 1) \) is the inverse of the mean free path of the particle. We want to maximize the mfp, therefore

\[
\begin{align*}
\ell = 1.0 + \sqrt{\Delta t_{1+1}}
\end{align*}
\]

Using Sweeps to Increase Accuracy

Future Work
We are now applying this work to non-linear thermal radiation transport problems.