CYGNSS Mission


Watch the CYGNSS mission launch! (16:40)

Air-launch of Pegasus XL, and stage-by-stage CYGNSS microsatellite deployment.

GRAPHIC: The CYGNSS mission team is comprised of scientists from the University of Michigan, Southwest Research Institute, Surrey Satellite Technology, U.S., L.L.C.
-----------------------------------------------------------------------------------------------------

Latest News

July 26, 2018

Flood detection a surprising capability of microsatellites mission

Hurricanes bring heavy rainfall and strong winds to coastal communities, a potent combination that can lead to devastating damage. In 2016 NASA launched a set of eight satellites called the Cyclone Global Navigation Satellite System, or CYGNSS, mission to gather more data on the winds in these tropical cyclones as part of an effort to increase data coverage of hurricanes and aid forecasts. As the first year of data is being evaluated, a new and unexpected capability has emerged: the ability to see through clouds and rain to flooded landscapes.

The flood maps are possible thanks to one of the innovations of the CYGNSS constellation. The microwave signal the CYGNSS satellites use to detect wind speed based on the choppiness of the ocean is actually not generated by the satellites at all. Instead the satellites use the constant and ubiquitous signals from the Global Positioning Satellite (GPS) system, which is also responsive to reflections from standing water and the amount of moisture in the soil.

To read the full news release from NASA/Goddard Space Flight Center, please go to: https://www.eurekalert.org/pub_releases/2018-07/nsfc-fda072618.php

-----------------------------------------------------------------------------------------------------

NASA’s Weather Prediction Project

The Cyclone Global Navigation Satellite System (CYGNSS) aims to improve extreme weather prediction.

CYGNSS will use a constellation of eight small satellites carried to orbit on a single launch vehicle. In orbit, CYGNSS’s eight micro-satellite observatories will receive both direct and reflected signals from Global Positioning System (GPS) satellites. The direct signals pinpoint CYGNSS observatory positions, while the reflected signals respond to ocean surface roughness, from which wind speed is retrieved.

The mission will study the relationship between ocean surface properties, moist atmospheric thermodynamics, radiation and convective dynamics to determine how a tropical cyclone forms and whether or not it will strengthen, and if so by how much. This will advance forecasting and tracking methods.

CYGNSS data will enable scientists, for the first time, to probe key air-sea interaction processes that take place near the inner core of the storms, which are rapidly changing and play large roles in the genesis and intensification of hurricanes.

The CYGNSS mission launched on December 15, 2016!

CYGNSS mission is comprised of 8 Low Earth Orbiting (LEO) spacecraft (S/C) that receive both direct and reflected signals from GPS satellites The CYGNSS mission is comprised of 8 Low Earth Orbiting (LEO) spacecraft (S/C) that receive both direct and reflected signals from GPS satellites.

CYGNSS is part of the
NASA Earth System Science Pathfinder program.



NASA Ames Research Center
University of Michigan
Southwest Research Institute of Texas
Surrey Satellite Technology of Colorado