This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/MWR-D-17-0240.1

The final published version of this manuscript will replace the preliminary version at the above DOI once it is available.

If you would like to cite this EOR in a separate work, please use the following full citation:

© 2018 American Meteorological Society
A Study of the HWRF Analysis and Forecast Impact of Realistically Simulated CYGNSS Observations Assimilated as Scalar Wind Speeds and as VAM Wind Vectors

To be submitted to Monthly Weather Review.

Bachir Annane*
NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami FL and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL

Brian McNoldy
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL

S. Mark Leidner
Atmospheric and Environmental Research, a Verisk Analytics company, Lexington, MA

Ross Hoffman
NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami FL and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL

Robert Atlas
NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Sharanya J. Majumdar
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL

*Corresponding author address: Cooperative Institute for Marine and Atmospheric Studies (CMAS), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Key Biscayne, FL 33149 E-mail: bachir.annane@noaa.gov
Abstract

In preparation for the launch of the NASA Cyclone Global Navigation Satellite System (CYGNSS), a variety of observing system simulation experiments (OSSEs) were conducted to develop, tune, and assess methods of assimilating these novel observations of ocean surface winds. From a highly detailed and realistic hurricane nature run (NR), CYGNSS winds were simulated with error characteristics that are expected to occur in reality. The OSSE system makes use of NOAA’s HWRF model and GSI data assimilation system in a configuration that was operational in 2012. CYGNSS winds were assimilated as scalar wind speeds and as wind vectors determined by a Variational Analysis Method (VAM). Both forms of wind information had positive impacts on the short-term HWRF forecasts, as shown by key storm and domain metrics. Data assimilation cycle intervals of 1, 3, and 6 hours were tested, and the 3-h impacts were consistently best. One day forecasts from CYGNSS VAM vector winds were the most dynamically consistent with the NR. The OSSEs have a number of limitations- most noteworthy that this is a case study and static background error covariances were used.
1. Introduction

Ocean surface wind observations from satellites have been shown to improve the accuracy of numerical weather analyses and forecasts (Atlas 2001, 1997; Candy et al. 2009; Leidner et al. 2003; Shultz et al. 2007). Accurate surface wind analyses and forecasts are key to estimating the potential damage from storm surge (the deadliest tropical storm hazard; Rapport et al., 2009; Powell and Reinhold, 2007) and wind. However, most current satellite observing systems are unable to provide accurate ocean surface wind speed data in areas of precipitation and generally have limited temporal resolution (e.g., 1-2 overpasses/day). Of all these systems, only L-band sensors such as those on the Soil Moisture Active Passive (SMAP, Entekhabi et al. 2010) satellite and the NASA Cyclone Global Navigation Satellite System (CYGNSS, Ruf et al. 2016a) can observe winds in the presence of heavy rain, such as occurs in the inner core of a tropical cyclone (TC). CYGNSS is expected to alleviate some of the current deficiencies in temporal and spatial sampling of the surface wind field of tropical cyclones. CYGNSS is also expected to provide improved wind speed observing capabilities to observe the structure and evolution of TCs. This will also improve the accuracy of the wind products that are inputs to storm surge models, e.g., the Coastal and Estuarine Storm Tide (CEST) and the Sea, Lake, and Overland Surge from Hurricane (SLOSH).

This study focuses on the impact of accurate near-surface wind observations over the ocean on numerical weather prediction (NWP) analyses and forecasts directly. It should be noted that such data also have the potential to indirectly improve NWP by improving the model parameterizations of wind stress and sensible and latent heat fluxes. These processes are
critical to air-sea interactions parameterized in global and regional weather forecast models
and are key to our understanding of the atmosphere-ocean system. Through assimilation of
such wind data, the depiction of the boundary layer can also be improved in weather forecast

Improvements in tropical cyclone forecasts over the past few decades have mainly been due to
advances in numerical models (Atlas et al. 2015; Gopalakrishnan et al. 2012; Rappaport et al.
2009; Willoughby, 2009). However, forecasting the intensity change of tropical cyclones
remains a challenging problem. One reason for the slower improvement in intensity forecasts
compared to track forecasts is the lack of frequent sampling of the inner core of the storm
(Rogers et al. 2013). Presently, only TC-penetrating aircraft collect measurements in the inner
core. These in situ measurements are only collected for about 30% of the lifetimes of tropical
cyclones in the Atlantic and even less in the eastern North Pacific (Rappaport et al., 2009).

Reconnaissance aircraft (Aberson et al. 2006) such as the NOAA P-3 host the most advanced
and accurate instrumentation, including stepped frequency microwave radiometers (SFMR,
Uhlhorn et al., 2007) and Global Positioning System (GPS) dropwindsondes (Hock and Franklin,
1999). With limited dwell time and limited resources (aircraft, dropsondes), the inner cores of
even the best-monitored TCs are relative data voids (Uhlhorn and Nolan 2012). A single well-
placed dropwindsonde, properly reduced by empirical methods to 10-m equivalent wind speed,
can estimate maximum surface wind speed and hence the TC intensity. However, a fleet of
dropwindsondes would be required to map out the complete TC surface wind field to depict the
full destructive potential of a storm (Powell and Reinhold, 2007).
CYGNSS was designed to address these observational deficiencies. The CYGNSS GPS receivers hosted on eight minisats were launched 17 December 2016 measure reflected ocean surface signals of opportunity (SoO) broadcast by the existing GPS satellites. This bistatic configuration, in which the transmitter and receiver are on different platforms (Fig. 1), contrasts with the monostatic configuration of scatterometers in which the transmitter and receiver are colocated. Using a constellation of eight small satellites at an altitude of 510 km in a single, low-inclination (35°) orbit plane, CYGNSS samples the tropics and subtropics at a nominal spatial resolution of 25 km with improved temporal sampling compared to polar orbiting satellites. For any given area on earth between 38° north and south latitude, the spatial and temporal sampling of the ocean surface by CYGNSS constellation is random, since the movements of the GPS and CYGNSS constellations are not coordinated (Ruf, et al, 2016b). But the orbits of the CYGNSS constellation generally produce measured reflections over an area the size of a typical tropical cyclone for two, 90-minute periods each day, separated by about 12 hours. An example of simulated, 6-hour coverage over the North Atlantic is shown and described below (Section 2.2.2).

The goal of the study presented here is to assess the potential utility of CYGNSS observations of ocean surface wind for hurricane analysis and forecasting. How might CYGNSS data be expected to improve or change the analysis and forecasts of tropical cyclones when incorporated into a hurricane analysis and forecast system? What methods work best to extract information from the CYGNSS observations? These questions are examined with an observing system simulation experiment (OSSE) approach (Hoffman and Atlas, 2016). The experiments conducted extend the experiments of McNoldy et al. (2017, hereafter M17). Both
M17 and the present study conducted OSSEs using the NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) hurricane OSSE system that assimilates CYGNSS observations simulated in different ways during the lifetime of one simulated hurricane. In an OSSE, the Nature Run (NR), or truth, provides both a point of comparison for OSSE experiment results, as well as the source for simulating all observations assimilated. In this study, a pair of self-consistent global and regional NRs are used: the ECMWF model (T511 NR) and an embedded Advanced Research Weather Research and Forecasting (WRF-ARW) nested high-resolution (up to 1-km resolution) simulation.

M17 found a positive impact on TC analyses and forecasts of adding CYGNSS observations to a control experiment through a progression of four experiments which added (1) realistic CYGNSS wind speed observations retrieved at high (12.5-km) resolution, (2) at nominal (25-km) resolution, (3) perfect wind speed observations, and (4) perfect wind vector observations. Both perfect simulated CYGNSS observation datasets (3, 4) are at the same resolution (12.5-km) and spatial coverage. The noisy high-resolution winds had the smallest impact because the QC procedures rejected much of these data. For this reason, experiments in this study use only nominal-resolution CYGNSS winds. The control experiment and experiment 2 of M17 form the baseline for the new experiments described here and are denoted CTRL6 and CYG6 below. The 25-km resolution simulated CYGNSS wind speeds of M17 are the basis of all experiments reported here.

Furthermore, in the present study, motivated by the very good results of experiment 4 of M17, direct assimilation of the CYGNSS wind speeds is compared to the assimilation of CYGNSS VAM
wind vectors created from the wind speeds as described by Leidner et al. (2017, hereafter L17).

As described in detail by L17, the CYGNSS VAM wind vectors are a result of a variational analysis

that combines the CYGNSS wind speeds and a background wind field. In the present case, the

background wind fields are 6-h forecasts of the surface wind from an HWRF control experiment
described below in Section 3. While M17 considered perfect wind vectors, here the effect of

observation errors is propagated from the CYGNSS raw observation to CYGNSS winds through

the VAM.

In addition, since TCs evolve and propagate quickly, shorter DA cycle intervals might yield

superior results. In the DA system used here, even though observation innovations are

evaluated with respect to the background at the time of the observation, these innovations are

all combined to influence the model state at the central analysis time. This approximation is

most appropriate for short DA cycles. However, every time the model is initialized with

observations, there is some adjustment. For TCs, this adjustment can result in substantial

increases (spin-up) or decreases (spin-down) of intensity. Therefore, there are tradeoffs in

selecting the optimal DA cycle interval. In this study, DA cycle intervals of 1, 3, and 6 hours are

tested, whereas M17 used 6-h cycles in all experiments.

The paper is organized as follows. Section 2 describes the OSSE framework. Section 3 presents

the experimental design and Section 4 the results. Section 5 summarizes the present study with

a focus on its findings and its limitations and briefly describes future planned studies.

2. OSSE framework
To conduct realistic OSSEs related to hurricane analyses and forecasts, AOML and the University of Miami developed a new regional OSSE framework (Atlas et al. 2015 a, b, c, McNoldy et al. 2017). A schematic of this OSSE framework is illustrated in Fig. 2.

2.1 Nature run

The OSSE framework is based on a high-resolution regional nature run (Nolan et al. 2013), called HNR1, that was created by embedding the Advanced Research Weather Research and Forecasting (WRF-ARW) model version 3.2.1 within a lower-resolution global nature run. HNR1 has an outer fixed domain of 27-km grid spacing spanning the tropical Atlantic basin, and three telescop ing storm-following nested domains of 9-, 3- and 1-km grid spacing. Sixty model layers span the vertical domain from the surface to 50 hPa. The boundary conditions are provided by a global nature run produced by the European Centre for Medium-range Weather Forecasts (ECMWF) (version c31r1) T511 model with 91 vertical levels, here called the T511 NR (Andersson and Masutani 2010). The T511 NR is a free-running forecast from 1200 UTC 1 May 2005 to 1200 UTC 1 June 2006. The period of HNR1 is from 0000 UTC 29 July 2005 to 0000 UTC 11 August 2005. The two nature runs have similar storm tracks but in the regional nature run the hurricane is simulated with more realistic intensity, scale, and structure and undergoes rapid intensification during the period centered on 4 August 2005.

2.2. Simulated observations

Within a typical OSSE framework, all observations should be simulated from a relevant Nature Run and observation errors appropriate to each observation type should be added. In the
hurricane OSSE system, observations are simulated by sampling the observed quantities from the T511 NR for conventional and routinely assimilated satellite data, whereas the CYGNSS observations are simulated with CYGNSS Science Team End-to-end Simulator (E2ES; O’Brien 2014) based on the HNR1 winds. Typical errors are added to the simulated conventional and satellite observations, while a wind retrieval error model assigns realistic errors to the simulated CYGNSS wind speed. In addition, vector winds are determined from simulated CYGNSS wind speeds using a 2D variational analysis method (VAM). The VAM analyzes the simulated CYGNSS wind speeds given an a priori, gridded ocean surface wind field. The resulting wind direction and speed in the VAM analysis are assigned at each CYGNSS retrieved wind location to produce VAM CYGNSS wind vectors. More detailed descriptions of the methods and data sources used to simulate observations in our study are provided below.

2.2.1 Conventional and satellite observations

Conventional and satellite observations corresponding to those assimilated in NCEP operations were simulated from the T511 NR described in section 2.1. Realistic observation errors by observation type are based on estimates in NCEP’s Gridpoint Statistical Interpolation (GSI) and added to each simulated observation. The errors are drawn from a zero-mean Gaussian distribution using the O-B error estimates as the standard deviation (Errico et al., 2013). Because of the close correspondence between the global T511 NR and the embedded regional WRF-ARW HNR1, the simulated conventional and satellite observations reflect the same synoptic conditions as HNR1 used to simulate the CYGNSS observations, just realized by a global model. All conventional observations of temperature, winds, moisture, and surface pressure,
atmospheric motion vectors, and satellite data types that were in operational use in 2012 are simulated from the T511 NR. (See Table 1 of Atlas et al. 2015c for the detailed list of satellite data sources.)

2.2.2 CYGNSS wind speed observations

The NASA CYGNSS Science Team simulated the CYGNSS wind speed observations with the E2ES, which takes orbital ephemeris for the actual GPS and simulated CYGNSS satellites to simulate reflected power from the gridded ocean surface wind fields. The reflected GPS signal power from the central reflecting point, i.e., the specular point (SP, in Fig. 1), as well as weaker reflections from a region approximately 100 km around the SP known as the “glistening zone”, are recorded in the measurement space of GPS signal delay and Doppler shift, known as a delay-Doppler map (DDM). DDMs of reflected power (Watts) are converted to DDMs of bistatic radar cross section $\sigma^0 (\text{m}^2)$. The σ^0 DDMs are the primary input to the CYGNSS wind speed retrieval algorithm.

For HNR1, E2ES generated specular points at a cadence of 1 Hz, using the highest available resolution HNR1 grid (27, 9, 3 or 1 km). Fig. 3 shows simulated CYGNSS winds in the 27-km domain at 1500 UTC 3 August 2005. Since the outer three grids are available every 30 minutes and the innermost domain every 6 minutes, the maximum time difference between NR output is 15 minutes. As the HNR1 nested grids are storm-following, CYGNSS SPs in or near the inner core are simulated using 1-km resolution HNR1 winds. Specular points further from the hurricane are simulated using HNR1 grids at lower resolutions, depending on location.
Consequently, the highest resolution is utilized in the region of highest wind speeds. Note how
the coverage changes as the observation window is shortened from +/- 3 hours, to +/- 1.5 hours
to +/- 0.5 hours, corresponding time windows used for 6-hourly, 3-hourly and hourly data
assimilation cycling. This change in sampling has important consequences for the impact of the
assimilated data (explored further in Section 4).

The HNR1 winds sampled by the E2ES at the CYGNSS locations are “perfect”. E2ES simulates
realistic variation in measurement uncertainties with two additive error components due to
uncertainty in: (1) the calibration of σ^0 DDMs and (2) the wind retrieval algorithm assuming
perfectly calibrated σ^0 DDMs. The σ^0 DDM uncertainty term was determined by the CYGNSS
Science Team from a Level 1 processing flowdown error budget to have zero mean and a
standard deviation of 1.2 m s$^{-1}$. The wind retrieval error term is more complex, depending on
wind speed and range-corrected gain (RCG). In a simulated calibration exercise, the mean and
variance of non-normal Gaussian distributions (“generalized normal”) were fit to Level 2 data in
four wind speed ranges and six RCG ranges. Using the wind speed from the HNR1 at the
specular point and the RCG calculated from the orbital ephemeris, Gaussian pseudo-random
errors are added to the perfect observations (O’Brien, pers. comm.). Observation error
computed for the simulated CYGNSS retrieved winds is a mixture of two Gaussian errors, one
normal and another non-normal with typical values of 2-4 m s$^{-1}$, depending on the factors
described above.

2.2.3 VAM CYGNSS wind vector observations
CYGNSS data do not include wind direction. With alternative GPS receiver hardware or ground processing, direction might be extracted from the reflected signal (e.g., Komjathy et al., 2004).

To assess the benefit of adding directional information, a 2-dimensional variational analysis method (VAM; Hoffman, 1982, 1984) is applied following L17 to simulated CYGNSS wind speeds to generate dynamically realistic vector wind field analyses. The VAM has been applied to determine wind direction from among 2-4 wind ambiguities from both NSCAT and QuikSCAT scatterometer missions (Hoffman et al., 2003). The VAM has also been used to generate nearly 30 years of 6-hourly global ocean surface wind analyses, combining all available passive microwave and scatterometer data since 1987 (Atlas et al., 1996, 2011). The VAM uses an a priori, or first guess, gridded surface wind field as a starting point for each analysis. In this study, 6-h forecasts on a 9-km-resolution outer domain from an HWRF regional Control OSSE experiment (CTRL6, described below in Section 3) are used as the VAM analysis first guess fields. This choice of first guess winds is intended to emulate what might be the best available choice in real-time, operational forecasting. A VAM analysis is generated four times a day at 0000, 0600, 1200 and 1800 UTC for the period of the OSSE (a 4-day period described below in Section 3). The VAM analysis u- and v-wind components are interpolated in space and time to the set of simulated CYGNSS wind speed locations assimilated. These derived observations are referred to hereafter as VAM CYGNSS vector winds. The VAM CYGNSS vector wind error is taken to be the simulated CYGNSS observation error determined by the E2ES plus the RMS VAM error compared to observations (i.e., root mean square of CYGNSS wind speed minus VAM analysis wind speed) to account for the influence of the VAM analysis on observation error.

The VAM analysis cost function balances the fit to observations with a minimum departure
from the background, so the RMS VAM error implicitly includes an estimate of background error.

2.3 Data Assimilation and Forecast Model

Since a global modeling system is heavily parameterized and cannot sufficiently resolve the small scales that are major contributors to the TC rapid intensification processes, a regional model specifically developed for TCs is used in this study. HWRF is used specifically to be consistent with the goals of Hurricane Forecast Improvement Project (Gall et al., 2013) and because the research version closely parallels the operational version. This approach allows us to assess the impact of new observing systems through improved HWRF initial conditions (IC), and is a similar set up used by Atlas et al. (2015b) to investigate the potential impact of an Optical Auto-covariance Wind Lidar (OAWL) on TC prediction. In our experiments, we use the 2012 version of the operational National Centers for Environmental Prediction (NCEP) Hurricane-WRF (HWRF) data assimilation (DA) system. The HWRF model parameterizations include the Global Forecast System (GFS) planetary boundary layer scheme, the new Simplified Arakawa-Schubert cumulus scheme (only for the parent domain since convection is explicit in the nested domain), the Ferrier microphysics scheme, and the Geophysical Fluid Dynamics Laboratory (GFDL) scheme for shortwave and longwave radiation. This version (v3.5) (Tallapragada et al., 2013; Atlas et al., 2015c) is configured in our experiments with a fixed 9-km parent domain and a 3-km nested storm-following domain (cf. Fig. 4). In the HWRF DA system, NCEP’s GSI 3-dimensional variational (3DVar) scheme assimilates the observations. Quality control (QC) follows GSI’s practice of gross outlier removal by comparison with background
values, and CYGNSS data are treated as ship observations for QC purposes. Data assimilation is performed on the 9-km domain only, with no vortex relocation.

3. Experimental design

Nine experiments varying the use of the CYGNSS observations and the frequency of the DA cycling interval are carried out within the OSSE system to assess the simulated impact of CYGNSS observations on hurricane analysis and forecasting. First, a control DA experiment (CTRL) assimilates standard conventional data that are routinely assimilated in the 2012 GFS Data Assimilation System (GDAS), including radiosondes, atmospheric motion vectors, and numerous satellite-based observations (see section 2.2.2), but no CYGNSS observations. This is followed by an experiment where CYGNSS wind speeds are added to the control (CYG), and an experiment where VAM CYGNSS wind vectors are added to the control (VAM). Each of these OSSEs is conducted at three data assimilation frequencies: 6-hourly, 3-hourly, and 1-hourly. (The numeral “6”, “3”, or “1” is added to the experiment names to denote cycling frequency; see Table 1.) Note that all simulated observations are binned/grouped by time at these frequencies, i.e., +/- 3, +/-1.5 and +/-0.5 h time windows around the DA analysis times, respectively. For convenience, in the text, we will refer to all the CTRL, CYG and VAM experiments collectively as EXP; CTRL6, CYG6 and VAM6 experiments collectively as EXP6, and similarly for EXP3 and EXP1.

The nine experiments and the average number of CYGNSS data assimilated in each DA cycle are listed in row 3 and 4 of Table 1. Although the total number of observations is the same, these
are divided into smaller chunks with increased cycling frequency. Also, the number of
assimilated variables doubles for the VAM experiments, since there are two wind components
(u- and v-wind) for each simulated CYGNSS wind speed in the CYG experiments. All of the
experiments are initialized at 0000 UTC 1 August 2005. GFS global control OSSE analyses
described by Casey et al. (2016) are used to provide initial and lateral boundary conditions.
Cycling is performed through 0000 UTC 5 August, for a total of 16, 32, and 96 analyses for
experiments with 6-, 3-, and 1-h cycles, respectively. A five-day HWRF forecast is initialized
every 6 hours in all experiments. Each experiment is then verified against the HNR1. Forecast
initial times before 0600 UTC 2 August are discarded to eliminate the effects of model
adjustment to the cold start from the global analysis. Error statistics reported below from
these nine OSSE experiments are compared using the final twelve forecasts in the experiment
period (i.e., with initialization times every 6 h from 0600 UTC 2 August to 0000 UTC 5 August).

4. OSSE Results

The results of the experiments described in the previous section are presented here in three
parts: (1) statistical summaries of the errors in TC track and intensity, (2) domain-wide errors,
and (3) physical interpretations of the analyses and forecasts of the 10-meter wind field.

4.1 Assessment of TC track and intensity errors

To evaluate and compare the effect of simulated CYGNSS wind speed and VAM CYGNSS wind
vectors, tropical cyclone metrics are calculated and compared to HNR1 values (truth). Those
metrics are: storm center position, minimum sea-level pressure (MSLP; hPa) and the maximum
wind speed (kt; Gall et al 2013). For each 5-day forecast within a given OSSE experiment (forecasts are started every 6 hours at synoptic times), error metrics are computed with respect to the HNR1 every six hours. Error in all cases is defined as experiment minus the truth (EXP-HNR1). Mean and standard deviation of error are computed from twelve forecasts (N=12) at each forecast lead time to 96 hours. (However, N is reduced for 108 and 120 h forecasts because some of the later verification times move the HNR1 hurricane close to the boundaries of our regional OSSE domain. For this reason, we show results from here forward for 0-96 hour forecasts.) Note that we calculate mean error, not mean absolute error. Nevertheless, track errors are always positive. Also, since the HWRF OSSE hurricanes are uniformly less intense than the HNR1 hurricane, all errors are positive (for MSLP) or negative (for maximum wind speed). So, in an absolute sense, the results shown are equal to mean absolute error. Note that while twelve is not a large number of forecasts for assessing statistical significance and these forecasts are all during the lifetime of a single simulated hurricane, the average performance does provide an indication of the variation of error over the forecast hours and between OSSE experiments.

The first row of Fig. 5 (a-c) shows the hurricane track error for each cycling frequency (6-, 3- and one-hourly). In each panel, the mean and standard deviation of the track errors with respect to the HNR1 are plotted as a function of forecast hour for CTRL, CYG and VAM experiments. Overall, the track errors among the experiments for any given cycling frequency are quite similar, i.e., forecast error growth dominates CYGNSS impact. All OSSE experiments and cycling frequencies produce similar position errors for 1-3-day forecasts (0-72 h), but EXP6 errors are
smaller than EXP3 and EXP1 errors for 3-4-day forecasts. An inverse relationship between cycling frequency and observation data coverage means that the 3-4-day track errors are increased for EXP3 and EXP1 compared to EXP6. The large-scale environment is better characterized by the increased data coverage of 6-hourly cycling. Initial position error (forecast hour 0) is smallest for EXP3 (Fig 5b; ~ 50 km). Judging from the overlap of one-standard-deviation bounds, analysis errors are likely not statistically significant. The differences in forecast track error statistics by cycling frequency are large enough to explore the statistical significance between different DA cycling intervals (see discussion of Fig. 6 below). For these OSSE experiments based on the HNR1 case, CYGNSS data do not seem to improve or degrade the forecast track, but the differences in track error are sensitive to cycling frequency. The second row of Fig. 5 (d-f) is similar in presentation to the first row, but for MSLP. As with track error, there are significant differences between experiments using different cycling frequencies. But unlike track error, EXP3 produces the lowest overall MSLP errors. For example, mean MSLP analysis errors (forecast hour zero) are 19-22 hPa for EXP6, 11-13 hPa for EXP3 and 13-17 hPa for EXP1. The standard deviation of MSLP forecast errors tends to decrease for all experiments, indicative of the forecast model consistently spinning-up initially weak storms. Notice that unlike track error, MSLP error is sensitive to both cycling frequency and the assimilation of CYGNSS data. For all cycling frequencies, the VAM OSSE experiments have the lowest MSLP errors compared to CTRL and CYG experiments over forecast hours 0-48. The positive impact of CYGNSS data evident in these average MSLP error statistics is large enough to explore statistical significance further (see discussion of Fig. 7 below).
The third row of Figure 5 (g-i) shows the error in maximum wind speed for all OSSE experiments. The monotonic reduction in maximum wind speed error (i.e., less negative) for all experiments during forecast hours 0-48 is another reflection of the forecast model consistently spinning-up initially weak storms. The maximum wind speed is closely tied to MSLP through the wind-pressure relationship (Knaff and Zehr 2007). Both metrics reflect hurricane intensity. Like the MSLP errors already discussed, maximum wind speed errors are smallest for EXP3, particularly during the start (out to 48 h) of the forecasts. This indicates that differences in these hurricane error statistics in our OSSE study are primarily due to cycling frequency. However, as with MSLP errors, assimilation of CYGNSS observations reduces maximum wind speed analysis and forecast errors through forecast hours 0-48 for all cycling frequencies by 0-8 kt.

The results in Fig. 5 point to potentially important impacts of assimilating simulated CYGNSS observations on hurricane intensity (i.e., reduced MSLP and maximum wind speed errors) and cycling frequency. To explore this further, the statistical significance of differences in forecast error between OSSE experiments is investigated. First, the influence of cycling frequency is shown in Figure 6 using the three CTRL OSSE experiments. CTRL3 and CTRL1 experiments are investigated, using CTRL6 errors as a common baseline. Using the CTRL experiments removes the influence of simulated CYGNSS observations from the evaluation of cycling frequency. MSLP error differences (Fig. 6a) show that assimilation every 3 h (CTRL3) improves forecast MSLP by 0-10 hPa during the first 24 hours compared to 6-hourly cycling (CTRL6). To assess significance,
the 95th percentile confidence interval (CI) from a two-sided paired t-test is plotted with gray semi-transparent shading. The 1-sided 95% confidence intervals are also plotted as light dotted or dash-dotted lines. Where the 1-sided CI lines are greater than zero, the mean experiment MSLP error is less than CTRL6 error with greater than 95% confidence. Fig. 6a shows that the CTRL1 experiment improvements are marginally significant at the 95% confidence level for forecast hours 0-60. But the improvement by assimilating every 3 hours is larger than in experiment CTRL1 during forecast hours 0-24, and with 95% significant difference between CTRL6 and CTRL3. The improvement from assimilation at at 1- or 3-h intervals after 48 hours reduces to near zero for the remainder of the forecast period.

The statistical significance of impacts on forecast maximum wind speed for different cycling frequencies are shown in Fig. 6b. The figure can be interpreted similarly to Fig. 6a and shows results similar to MSLP. Therefore, forecasts of both MSLP and maximum wind speed are most accurate with 3-hourly cycling and the improvements are statistically significant for at least the first 24 hours.

Next, the influence of CYGNSS data on the 3-hourly cycling experiments is shown in Figure 7. CYG3 and VAM3 experiments are investigated, using CTRL3 errors as a common baseline. Figure 7 shows the difference between CYG3/VAM3 experiment errors and CTRL3 errors, i.e., CTRL3-EXP3, for MSLP and maximum wind speed. MSLP error differences (Fig. 7a) indicate that assimilation of CYGNSS data (both in scalar and vector form; CYG3 vs. VAM3, respectively) improves the forecast MSLP by 2-5 hPa during the first 48 hours. To assess significance, the 95th
percentile confidence interval (CI) from a two-sided paired t-test is plotted with light blue and
light orange semi-transparent shading. Since the OSSE forecast hurricanes are uniformly less
intense than HNR1, a more appropriate hypothesis is that the CYGNSS observations increase
the intensity of the analyzed and forecast hurricane. There the 1-sided 95% confidence intervals
are also plotted as dotted lines. Where the dotted, 1-sided CI lines are greater than zero, the
mean experiment MSLP error is less than CTRL3 error with 95% confidence. Fig. 7a shows that
the VAM3 experiment improvements are marginally significant at the 95% confidence level for
forecast hours 0-48. The improvement by assimilating VAM3 vectors is somewhat larger than
in experiment CYG3 during forecast hours 0-36, and with 95% significant difference between
forecast hours 24-36. The improvement from assimilation of VAM CYGNSS vectors after 48
hours reduces to near zero for the remainder of the 5-day forecast period, whereas the
improvement from the assimilation of CYGNSS wind speed continues in the forecasts until 96
hours. But the reduction in error in the CYG3 forecasts between hours 48-96 is only statistically
significant with 95% confidence at forecast hour 72.

The statistical significance of impacts from assimilating CYGNSS observations on forecast
maximum wind speed are shown in Fig. 7b. The figure can be interpreted similarly to Fig. 7a.
Because intensity in terms of maximum wind speed has the opposite sense of intensity in terms
of MSLP (see above), improvements in CYG3 and VAM3 forecasts with respect to CTRL3 appear
as mean error differences less than zero. Therefore, where the 1-sided CI lines (dotted lines)
are less than zero, the mean experiment maximum wind speed error is less than CTRL3 error
with 95% confidence. The average reduction in maximum wind speed error from assimilation of
CYGNSS observations is 2-6 kt over forecast hours 0-54. The VAM3 error differences from CTRL3 are significant at the 95% level for forecast hours 0-54.

4.2 Domain-wide errors

Figure 8 shows the domain-wide error statistics for 10-meter wind speeds with respect to the HNR1 10-meter winds. Given that the 9-km domain dimensions are 411 x 705, and that there are 12 forecasts, the RMS error (square root of the mean squared vector wind difference) at each 6-h forecast interval is the result of approximately 3.5 million wind speed differences (EXP - HNR1). Notice that the RMS errors are generally quite small, increasing from 1-2 kt in the analyses (forecast hour 0) to 3-4 kt for 5-day forecasts. The standard deviation of those errors also increases from 0.25 kt to 1 kt. As with the error statistics presented in Fig. 5, the EXP3 have the lowest errors at analysis times. The effect of CYGNSS data can be seen over the first 0-24 forecast hours on a domain-wide basis. The RMS error in the analyzed fields is reduced by small but consistent amounts (0.1 – 0.25 kt as forecast time increases) by the assimilation of CYGNSS data (i.e., compared to CTRL), with the largest reductions occurring in the 6-hourly and 1-hourly cycling experiments at least in part since CTRL6 and CTRL1 errors are larger than CTRL3 error. Improvements similar to those in the 10-meter, domain-averaged winds owing to CYGNSS data can be seen in other upper level fields (e.g., 850 hPa temperature, 500 hPa heights; not shown).

Figure 9 shows the absolute integrated kinetic energy (IKE) differences (errors) between the OSSE experiments and HNR1, arranged by cycling frequency as in Fig. 8. In Fig. 9, IKE is the
domain integral of the squared 10-m wind vector, scaled into energy units (Powell and Reinhold, 2007). Thus, IKE accumulates the energy of a 2D wind field at a given time to a single, scalar estimate of total energy. The IKE differences by experiment and by DA cycling frequency mirror the results presented in Figs. 5 and 7 for MSLP error, maximum wind error and domain-wide 10-meter wind error. That is, 3-hourly DA cycling produces the lowest IKE error for CTRL, CYG and VAM experiments, and the assimilation of CYGNSS data, whether wind speed or VAM CYGNSS vector data, reduces the IKE error at all cycling frequencies which is in agreement with results presented in McNoldy et al. (2016). As seen in the domain-wide errors in Fig. 8, the error reduction from the assimilation of CYGNSS data is largest in the 6-hourly and hourly cycling experiments at least in part since CTRL6 and CTRL1 errors are larger than CTRL3 error.

4.3 10-meter hurricane wind field

The distribution of surface wind vectors around a hurricane is its dynamic footprint on the ocean surface. It reflects the structure of the low-level wind field and controls interaction with the ocean surface, including storm surge, surface fluxes, the wave field, and ocean mixed-layer depth. Next, visualizations of 10-meter wind fields from the HNR1 and OSSE experiments illustrate the impact of CYGNSS data.

Given the significance of the improvement in 0-48-h intensity forecasts shown in the previous section, Figures 10 and 11 illustrate the physical impacts of assimilation of CYGNSS data on 24-hour forecasts of the 10-meter wind field. For the period and geographic region of our study, the entire hurricane circulation is sampled by CYGNSS during the two, 3-hourly DA cycles each
day at 1500 and 1800 UTC. Therefore, 5-day forecasts starting at 1800 UTC on any day during the OSSE experiments have the benefit of one or two recent 3-hourly DA cycles with assimilation of CYGNSS data in or near the inner core of the tropical cyclone. So, 24-h forecasts starting at 1800 UTC should show the clearest benefit from assimilation of these data.

Figure 10 shows 10-meter wind speed fields from the HNR1 (9-km domain) and three 24-hour forecasts from the 9-km domain of OSSE experiments CTRL3, CYG3 and VAM3, all valid at 1800 UTC August 4. The fields are instantaneous values and are therefore subject to fluctuation from time step to time step. For example, the maximum wind speed can change location and intensity from model time-step to time-step. Nevertheless, the pattern of the 10-meter wind speed field gives a good overall indication of intensity and shows storm asymmetries. The HNR1 wind speed maximum of 52.8 m s\(^{-1}\) is more closely approximated by CYG3 and VAM3 24-hour forecasts (maximum wind speeds of 49.8 and 51.6 m s\(^{-1}\), respectively) than by CTRL3 (47.0 m s\(^{-1}\)). Also, the closed annulus of winds greater than 40 m s\(^{-1}\) in HNR1 is most closely approximated by the 24-hour CYG3 forecast. Neither the CTRL3 nor VAM3 24-hour forecast wind fields have wind speeds greater than 40 m s\(^{-1}\) in all quadrants as in the HNR1 and CYG3 forecast. Thus, the 24-hour forecast wind fields in both experiments that assimilate CYGNSS data (CYG3 and VAM3) are improved but in different aspects compared to the CTRL3 forecast.

Figure 11 shows a comparison of OSSE 24-h forecast wind field to the HNR1 wind field but valid 1800 UTC August 5, a day later than in Fig. 10. In this comparison, the VAM3 forecast is closest in intensity and structure to the HNR1 wind field. Note that the CYG3 forecast wind field is not
as intense or as well structured as the CTRL3 forecast wind field. At other analysis times, assimilation of CYGNSS data when the hurricane is only partially covered can produce asymmetries in the resulting GSI 3DVar analyses in both CYG3 and VAM3 experiments (not shown). The issue of partial sampling of tropical systems by space-based instruments that measure ocean surface winds (passive microwave and scatterometers) has long been a challenge for DA systems. However, in our OSSE experiments, the asymmetries introduced by the assimilation of simulated CYGNSS wind speed (CYG3) are often stronger and more disturbing to the structure of the surface wind field than the assimilation of VAM CYGNSS winds (VAM3). The more complete set of information presented to the DA system as VAM CYGNSS winds is likely the reason that these winds produce consistently better analyses and 0-48 hour forecasts compared to CYG experiments. This is one explanation for the differences between CYG3 and VAM3 0-48 hour forecast errors presented in Fig. 7 (Section 4.1).

5. Summary and concluding remarks

The potential value of observations to be collected by the NASA Cyclone Global Navigation Satellite System (CYGNSS) for hurricane analysis and forecasting is explored in a simulation study. Since vector winds have more information content than scalar winds, two approaches to assimilating the CYGNSS observations were tested: CYGNSS winds were assimilated as scalar wind speeds and as wind vectors determined by the VAM (as described by L17). Because TCs can evolve rapidly, results from three different DA cycle intervals (1-, 3-, and 6-hourly) were compared to assess CYGNSS impact.
The OSSE experiment results on the 9-km domain are evaluated with respect to the HNR1 9-km domain. A combination of statistical evaluations of analysis and forecast errors and phenomenological evaluations of the OSSE hurricane 10-meter wind fields demonstrate a number of consistent findings. Overall, the results show that impacts of assimilating simulated CYGNSS data on the analysis and forecasts are positive and that the OSSE system performance is sensitive to cycling frequency. Analysis and forecast errors for all experiments (CTRL, CYG and VAM) are lowest for 3-hourly DA cycling, and lower than 6-hourly and 1-hourly errors with statistical significance greater than 95% for 0-36h forecast lead times. This result demonstrates that the interaction between hurricane forecasts in the HWRF model and 3-hourly application of GSI 3DVar are the most beneficial to the maintenance of a balanced cyclone during DA cycling. Therefore, the following summary of results focuses on 3-hourly DA cycling experiments, though similar results hold for all cycling frequencies.

For the 3-hourly DA cycling OSSE experiments, CYGNSS data improve the forecast intensity of the simulated hurricane over the first 48 h by 2-5 hPa for minimum sea-level pressure and by 2-6 kt for maximum wind speed compared to experiment CTRL3. These improvements are statistically significant at the 95% confidence level for VAM3 experiment, and at a 90% confidence level for the CYG3 experiment. There is no statistically significant reduction or increase in track error for OSSE experiments CYG3 or VAM3 compared to CTRL3. For forecast hours 48-96, the intensity improvement in the VAM3 experiment is reduced to near zero, and the intensity improvement in CYG3 experiment is still positive but with lower statistical
confidence (i.e., < 95%). This improvement in forecasts due to CYGNSS observations is also quantified as a reduction of integrated kinetic energy (IKE) error in all experiments that assimilate simulated CYGNSS data compared to CTRL experiments. From examples of 24-hour HWRF forecasts of the 10-meter surface winds along with the validating HNR1 wind fields, the structure of the inner core 10-meter wind field in CYG and VAM experiment forecasts is improved compared to CTRL experiments.

These results suggest that for forecast hours 0-36, assimilation of VAM CYGNSS vectors improves the intensity and structure of the 10-meter wind field in HWRF forecasts more than assimilation of CYGNSS wind speed alone. When GSI 3DVar is applied to cases with partial coverage of the hurricane circulation by simulated CYGNSS wind observations, assimilation of CYGNSS wind speed routinely produces larger asymmetries in the analyzed hurricane wind field compared to assimilating VAM CYGNSS vectors. The evidence for this can be seen in the reduction of mean MSLP and maximum wind speed errors for VAM experiments compared to CYG experiments for forecast hours 0-36 hours. Further examples in L17 show that the VAM wind vectors are dynamically consistent with the background. Greater impact from CYGNSS is anticipated when plans are realized to integrate the VAM into the HWRF DA system as a pre-processor for CYGNSS observations (L17). It should be noted that using HWRF short-term forecasts as backgrounds for VAM analyses will bias VAM CYGNSS vectors toward HWRF model solutions, including model errors. However, for the small spatial scales in the wind field near the centers of TCs, it is arguable that no better choice of backgrounds for VAM wind vector analyses exists for use in near real-time operations.
The most important limitations of the present study are that static background error covariance (BEC) is used and that this is a single case study. Since TCs are highly structured phenomena, the true BECs are complex and poorly approximated by the static BECs used in this study. Ensemble and hybrid DA methods should be used in future OSSEs and OSEs to overcome this limitation. A comparison of multiscale GSI-based EnKF and 3DVar assimilation shows that the EnKF produces improved analysis and forecasts primarily due to local, flow-dependent background error covariances and cross-variable correlation (Johnson et al. 2015). One storm is clearly too small of a sample size to draw any general results, and a much larger sample of simulated TCs in different ocean basins is required to generate more robust error statistics. This study should be extended to multiple TCs using real data. The 2017 hurricane season provides the first opportunity to systematically observe tropical cyclones with the CYGNSS constellation. During this period, the authors plan to investigate the impact of real CYGNSS data, assimilating both scalar wind speed and VAM CYGNSS vectors, in Observing System Experiments (OSEs) that parallel HWRF operations.

Acknowledgments

This study was supported by NOAA---directly and through the Cooperative Agreement NA15OAR4320064 for the Cooperative Institute for Marine and Atmospheric Studies (CIMAS)---and by NASA through Award NNL13AQ00C. We thank Christopher Ruf at the University of Michigan and the CYGNSS Science Team for the simulated CYGNSS datasets, the NOAA Office of Weather and Air Quality for funding the initial development of the regional OSSE framework,
the NOAA Hurricane Forecast Improvement Project for computing resources, the
Developmental Testbed Center for the GSI and HWRF code and support, Sean Casey at
CIMAS/AOML for providing the GFS Control data, and David Nolan at the University of Miami
for providing the WRF nature run dataset.

References

Aberson, S. D., M. L. Black, R. A. Black, J. J. Cione, C. W. Landsea, F. D. Marks, and R. W. Burpee,
2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer.

Andersson, E. and M. Masutani, 2010: Collaboration on observing system simulation
experiments (joint OSSE). ECMWF Newsletter, (123), 14–16.

Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data

experiments to assess the potential impact of new observing systems on hurricane
Evolution of Marine Technologies: Commemorating the 50th Anniversary of the MTS
Journal, guest edited by Donna Kocak.

2011: A cross-calibrated, multi-platform ocean surface wind velocity product for

Casey, S. P. F., et al., 2016: Geostationary hyperspectral infrared constellation: Global observing

Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks, Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane
forecasting: Influence of model horizontal grid resolution, initialization, and physics.

presentation: Available online at

TABLE 1. List of Experiments.

Figure 1. Geometry of bistatic radar measurement of GPS-based quasi-specular surface scattering. The GPS direct signal (Transmitter) provides location, timing, and frequency references, while the forward scattered signal received by CYGNSS (Receiver) contains ocean surface information. Image from Claziria and Zavorotny (2015).

Figure 2. Basic flow chart of the regional OSSE framework.

Figure 3. Example of sampling of the North Atlantic by the simulated CYGNSS constellation, +/- 3 hours around 1500 UTC August 3, 2005. The locations of simulated CYGNSS data in the 6-hour window are plotted as colored dots. The blue and green dots show the locations of subsets of all observations within +/- 1.5 hours and +/- 0.5 hours, respectively, of 1500 UTC.
CYGNSS observation locations are overlaid on the hurricane nature run (HNR1), 27-km resolution (d01) 10-meter wind speed field, valid at the same time.

Figure 4. Configuration of model domains. The 27-km resolution domain (d01) of HNR1 is shown in blue color, and the 9 km (d01) and nested 3 km (d02) OSSE grids are shown in a black color.

Figure 5. Average storm forecast errors with light +/- standard deviation lines plotted for 6-hourly (a, d, g), 3-hourly (b, e, h), and hourly (c, f, i) DA cycling experiments. Mean errors/deviations are colored by OSSE experiment: black/grey for CNTL, red/light red for CYG, and blue/light blue for VAM.

Figure 6. (a) Minimum sea-level pressure forecast error and (b) maximum wind speed forecast error of experiments CNTL3 (heavy dashed black) and CNTL1 (solid black) with respect to CNTL6 forecast errors. 95th percentile confidence intervals (CI) are plotted: 2-sided CIs are plotted in transparent gray and 1-sided CIs are plotted with a thin dash-dotted line for CNTL3 and a dotted line for CNTL1. (c) and (d) as in (a) and (b), but for CYG3 and CYG1 errors with respect to CYG6 forecast errors. (e) and (f) as in (a) and (b), but for VAM3 and VAM1 errors with respect to VAM6 forecast errors.

Figure 7. (a) Minimum sea-level pressure forecast error and (b) maximum wind speed forecast error of experiments CYG3 (red) and VAM3 (blue) with respect to CNTL3. 95th
percentile confidence intervals (CI) are plotted: 2-sided CIs are plotted in transparent colors and 1-sided CIs are plotted with thin dotted lines.

Figure 8. Large-scale, domain-averaged 10-meter wind errors (RMS, m s⁻¹) for (a) 6-hourly DA cycling, (b) 3-hourly DA cycling and (c) hourly cycling. Experiments are plotted by color as in Fig. 5.

Figure 9. Absolute integrated kinetic energy (IKE) error (TJ) as a function of forecast hour for (a) 6-hourly DA cycling, (b) 3-hourly DA cycling and (c) hourly cycling. Error is the difference between OSSE experiment IKE and Nature Run IKE (HNR1).

Figure 10. (a) Nature Run 10-meter wind speed valid at 1800 UTC August 4 and (b-d) 24-hour forecasts of 10-meter wind speed from OSSE experiments CNTL3, CYG3 and VAM3, valid at the same time as (a). The instantaneous wind maximum (V_{max}) is labeled in the lower left in each panel.

Figure 11. As in Fig. 10 but for (a) Nature Run valid time of 1800 UTC August 5 and (b-d) 24-hour OSSE experiment forecasts valid at 1800 UTC August 5.
TABLE 1. List of Experiments.

<table>
<thead>
<tr>
<th>Experiment name</th>
<th>Description</th>
<th>Average Number of Observations Assimilated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6 hours</td>
</tr>
<tr>
<td>CTRL6, CTRL3, CTRL1*</td>
<td>Conventional Satellite/ Surface/sounding data; no CYGNSS.</td>
<td>51,547</td>
</tr>
<tr>
<td>CYG6, CYG3, CYG1*</td>
<td>CTRL plus all available CYGNSS wind speed (CYGNSS counts only)</td>
<td>15,091</td>
</tr>
<tr>
<td>VAM6, VAM3, VAM1*</td>
<td>CTRL plus VAM wind vectors at CYGNSS retrieval coordinates (CYGNSS counts only)</td>
<td>30,182</td>
</tr>
</tbody>
</table>

* 6, 3 and 1 denote the cycle interval in h.*
Figure 1. Geometry of bistatic radar measurement of GPS-based quasi-specular surface scattering. The GPS direct signal (Transmitter) provides location, timing, and frequency references, while the forward scattered signal received by CYGNSS (Receiver) contains ocean surface information. Image from Claziria and Zavorotny (2015).
Figure 2. Basic flow chart of the regional OSSE framework.
Figure 3. Example of sampling of the North Atlantic by the simulated CYGNSS constellation, +/- 3 hours around 1500 UTC August 3, 2005. The locations of simulated CYGNSS data in the 6-hour window are plotted as colored dots. The blue and green dots show the locations of subsets of all observations within +/- 1.5 hours and +/- 0.5 hours, respectively, of 1500 UTC. CYGNSS observation locations are overlaid on the hurricane nature run (HNR1), 27-km resolution (d01) 10-meter wind speed field, valid at the same time.
Figure 4. Configuration of model domains. The 27-km resolution domain (d01) of HNR1 is shown in blue color, and the 9 km (d01) and nested 3 km (d02) OSSE grids are shown in a black color.
Figure 5. Average storm forecast errors with light +/- standard deviation lines plotted for 6-hourly (a, d, g), 3-hourly (b, e, h), and hourly (c, f, i) DA cycling experiments. Mean errors/deviations are colored by OSSE experiment: black/grey for CNTL, red/light red for CYG, and blue/light blue for VAM.
Figure 6. (a) Minimum sea-level pressure forecast error and (b) maximum wind speed forecast error of experiments CNTL3 (heavy dashed black) and CNTL1 (solid black) with respect to CNTL6 forecast errors. 95th percentile confidence intervals (CI) are plotted: 2-sided CIs are plotted in transparent gray and 1-sided CIs are plotted with a thin dash-dotted line for CNTL3 and a dotted line for CNTL1. (c) and (d) as in (a) and (b), but for CYG3 and CYG1 errors with respect to CYG6 forecast errors. (e) and (f) as in (a) and (b), but for VAM3 and VAM1 errors with respect to VAM6 forecast errors.
Figure 7. (a) Minimum sea-level pressure forecast error and (b) maximum wind speed forecast error of experiments CYG3 (red) and VAM3 (blue) with respect to CNTL3. 95th percentile confidence intervals (CI) are plotted: 2-sided CIs are plotted in transparent colors and 1-sided CIs are plotted with thin dotted lines.
Figure 8. Large-scale, domain-averaged 10-meter wind errors (RMS, m s$^{-1}$) for (a) 6-hourly DA cycling, (b) 3-hourly DA cycling and (c) hourly cycling. Experiments are plotted by color as in Fig. 5.
Figure 9. Absolute integrated kinetic energy (IKE) error (TJ) as a function of forecast hour for (a) 6-hourly DA cycling, (b) 3-hourly DA cycling and (c) hourly cycling. Error is the difference between OSSE experiment IKE and Nature Run IKE (HNR1).
Figure 10. (a) Nature Run 10-meter wind speed valid at 1800 UTC August 4 and (b-d) 24-hour forecasts of 10-meter wind speed from OSSE experiments CNTL3, CYG3 and VAM3, valid at the same time as (a). The instantaneous wind maximum (Vmax) is labeled in the lower left in each panel.
Figure 11. As in Fig. 10 but for (a) Nature Run valid time of 1800 UTC August 5 and (b-d) 24-hour OSSE experiment forecasts valid at 1800 UTC August 5.