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 
Abstract— Measurements of near surface wind speed made by 

the CYGNSS constellation of GNSS-R satellites are evaluated 
and their uncertainty is assessed in two ways. A bottom-up 
assessment begins with a model for the error in engineering 
measurements and propagates that error through the wind speed 
retrieval algorithm analytically. A top-down assessment performs 
a statistical comparison between CYGNSS measurements and 
coincident “ground truth” measurements of wind speed. Results 
of the two approaches are compared. Overall performance, as 
determined by the top-down method, is decomposed using the 
bottom-up approach into its contributing sources of error.  
Overall RMS uncertainty in the CYGNSS retrievals is 1.4 m/s at 
wind speeds below 20 m/s. At higher wind speeds, an increase in 
the retrieval error is primarily caused by a decrease in the 
sensitivity of the ocean scattering cross section to changes in wind 
speed.  In tropical cyclones, retrieval errors are compounded by 
unaccounted departures from a fully developed sea state. Overall 
RMS uncertainty in the CYGNSS retrievals is 17% at wind 
speeds above 20 m/s. 
 

Index Terms— CYGNSS, Geophysical Model Function, GNSS-
R, Ocean Surface Wind Speed 

I. INTRODUCTION 

ssessments of the uncertainty in remotely sensed 
estimates of geophysical parameters from space often 

follow one of two approaches. A bottom-up approach tracks 
the estimate from initial engineering measurement through 
sensor calibration and geophysical retrieval algorithm. Each 
step is modeled and the associated sources of error quantified, 
resulting in a propagation of errors calculation of the expected 
performance. This approach has the advantage of identifying 
and characterizing individual contributors to the overall 
uncertainty. Such an error budget can, for example, be useful 
as a guide to direct future work toward improvements in the 
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largest, driving, sources of error. An alternative, top-down, 
approach compares the retrieved geophysical parameter to an 
independent measurement of the same parameter which is 
matched up to be nearly coincident in time and space. The 
most common method of comparison used is the root mean 
square (RMS) difference between them, averaged over a large 
population of matchups. Retrieval uncertainty is extracted by 
decomposing the RMS difference into its individual 
contributors: errors in the independent measurement, any 
spatial or temporal decorrelation because the two 
measurements were not made at the same time or averaged 
over the same spatial region, and the retrieval uncertainty in 
question.  The top-down approach is useful as an end to end 
assessment of retrieval performance and, when combined with 
the bottom-up assessment, can serve to validate the error 
model on which it is based.  

Previous spaceborne measurements of ocean surface winds 
have been evaluated using both bottom-up [1] and top-down 
[2], [3], [4] approaches. In general, the top-down approach is 
more common, especially with more mature remote sensing 
techniques for which the bottom-up error budget is reasonably 
well understood and the focus is usually on validating the 
performance of a particular new sensor. In the case of GNSS-
R measurements of near-surface ocean wind speed, previous 
spaceborne missions have been primarily technology 
demonstrations and their top-down assessments have focused 
on showing that the measurements were possible [5], [6]. The 
Cyclone Global Navigation Satellite System (CYGNSS) is the 
first GNSS-R mission driven by scientific objectives, namely 
the frequent measurement of near-surface ocean wind speed in 
and near tropical cyclones [7]. In support of those objectives, a 
more comprehensive assessment of measurement uncertainty 
is developed here, including both bottom-up and top-down 
analyses.  
The CYGNSS mission consists of eight spacecraft dispersed 
around a common low Earth orbit at 35 deg inclination and 
520 km altitude. Each spacecraft carries a 4-channel GNSS-R 
radar receiver capable of measuring Global Positioning 
System (GPS) L1 signals scattered from the ocean surface [8]. 
Those received signals are first calibrated into Level 1 (L1) 
measurements of bistatic radar cross section [9], [10], from 
which the L1 observables of normalized bistatic radar cross 
section (NBRCS) and Leading Edge Slope (LES) are derived. 
The L1 observables are then used to retrieve Level 2 (L2) 
estimates of the 10 m referenced wind speed above the ocean 
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surface (u10) [11]. A detailed description of the mission and of 
the algorithms associated with production of its L1 and L2 
science data products is provided in [12]. The work presented 
here examines bottom-up and top-down assessments of the 
uncertainty in both the L1 NBRCS and LES and the L2 wind 
speed products. Particular attention is paid to the performance 
at the low NBRCS and LES values and high wind speeds 
encountered in tropical cyclones. One primary objective of 
this work is an assessment of performance relative to mission 
level requirements on wind speed measurement uncertainty of 
+/- 2 m/s at wind speeds below 20 m/s and +/-10% at wind 
speeds above 20 m/s. 

II. LEVEL I CALIBRATION OF OCEAN SURFACE SCATTERING 

CROSS SECTION 

CYGNSS Level 1 calibration is performed in two steps. 
First, Level 0 measurements by the on-board instrument are 
converted from units of raw digital counts to a Level 1a Delay 
Doppler map (DDM) of signal power in units of Watts. This is 
performed using an estimate of the individual DDM noise 
floor, a near-time coincident black body calibration load noise 
power estimate and pre-launch instrument noise calibration 
tables which characterize the instrument noise power 
variations with temperature.  Second, the L1a DDM is 
converted to a Level 1b DDM of BRCS values by an 
unwrapping of the other terms appearing in the bistatic radar 
equation. The primary correction terms in the L1b calibration 
include the transmitter effective isotropic radiated power 
(EIRP), the receive antenna gain pattern and the transmit path 
loss.  

After calibration, a 3 delay bin by 5 Doppler bin sub-region 
of the L1b DDM centered on the specular point is used to 
derive the two L1 observables. The NBRCS observable is 
computed as the summation of the L1b DDM over the 3x5 
region divided by the effective surface scattering area of the 
region. The LES observable is computed as the slope of the 
integrated delay waveform, found by summing across all 5 
Doppler bins at each delay value and considering the result as 
a function of delay only. More details on the Level 1 
calibration and error analysis can be found in [9] and [10]. 

A. Bottom-up estimate of L1a and L1b errors 

Bottom up error analysis of the Level 1 calibration was 
performed using best estimates of the individual terms in the 
L1a and L1b calibration equations. This consisted, when 
possible, of performing error analyses on pre-launch 
measurements of satellite hardware (e.g. in the case of the 
LNA noise power versus temperature characterization) and in 

other cases by using component specifications together with 
models to predict errors (e.g. in the case of the impact of 
spacecraft attitude knowledge uncertainty on receive antenna 
gain error). Individual term-by-term estimates for all Level 1 
error parameters are described in greater detail in [9] and [10].  

One significant error term in the L1 calibration is uncertainty 
in the GPS EIRP, which is caused by errors in knowledge of 
the GPS transmit power and transmit antenna gain. The EIRP 
is monitored by a ground based GPS Power Monitor and those 
measurements are used to reduce the uncertainty in the GPS 
antenna patterns and in the transmit power of individual GPS 
satellites [13]. This results in a GPS EIRP uncertainty of 0.24 
dB. The combined uncertainty due to all other sources of error 
in L1 calibration is 0.31 dB. The total L1 uncertainty is the 
root-sum-square of these two terms, or 0.39 dB [10]. 

B. Top-down estimate of L1b error  

Top-down performance assessments are most often 
performed of the geophysical parameters estimated by a 
sensor rather than of its L1 measurements, largely because it 
can be difficult to obtain accurate, independent estimates of 
the L1 measurements with which to compare.  In the case of 
CYGNSS, closely spaced satellites often make measurements 
that should be nearly identical to one another. Differences 
between the actual measurements can be used to assess many 
of the errors associated with L1 calibration.  This “trailing 
pair” technique is used here to provide a top-down assessment 
of the uncertainty in the L1 science data products.  

A trailing pair dataset was assembled from measurements 
made by the CYGNSS constellation during the period 31 July 
to 23 August 2017. All possible pairs of measurements made 
by two different spacecraft were considered and only those 
were selected which meet the following criteria: difference in 
measurement time < 10 min; difference in specular point 
location < 5 km; difference in incidence angle of observation 
< 1 deg. In every case, the two measurements shared the same 
GPS transmitting satellite. This selection results in a total of 
~200,000 pairs of measurements, which represents ~3% of the 
total number of samples made during this 24 day interval.  
Suitable trailing pair measurements are found using a variety 
of possible pairs of the eight satellites in the constellation – 
typically sequential pairs separated by less than ten minutes 
around the orbit plane. The tight restrictions on the similarity 
between the measurements are imposed to ensure that 
observations are made of a nearly identical ocean surface at 
the same measurement geometry. Scatterplots of the 
measurements by one satellite vs. the other for both NBRCS 
and LES L1 observables are shown in Fig. 1. 
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The highest density of samples lies along the 1:1 center line 
in both plots, as expected. The statistical spread of the 
difference between the pair of measurements quantifies the 
measurement error due to all sources other than those related 
to knowledge of the GPS transmission characteristics (i.e. the 
GPS EIRP), which are common to both measurements. 
Histograms of the difference are show in Fig. 2. Note that Fig. 
1 shows the numeric data values themselves whereas Fig. 2 
shows the relative differences in units of dB.  

The RMS values of the relative differences, estimated from 
the populations shown in Fig. 2, are 0.48 dB and 0.71 dB for 
the NBRCS and LES observables, respectively. Since these 
are differences between two spacecraft measurements with 
independent measurement noise and calibration errors, the 

uncertainty in one of the measurements is lower by a factor of 
√2. Therefore, the top-down estimate of uncertainty in L1 
measurements due to all factors other than error in knowledge 
of the GPS EIRP is given by 0.34 dB (NBRCS) and 0.50 dB 
(LES).  

C. Comparison of bottom-up and top-down results 

The bottom-up error budget discussed in Section II.A above 
specifies 0.31 dB as the bottom-up estimate of measurement 
uncertainty in NBRCS due to all noise and calibration error 
effects other than GPS EIRP. This compares favorably to the 
top-down estimate of 0.34 dB found using the trailing pair 
method. The larger error in the case of the top-down estimate 
may be a result of larger actual errors than were assumed in 
the bottom-up analysis, or they may result from small 
differences in the ocean surface scattering cross section given 
the separations between pairs of observations of up to 10 min 
and 5 km. A conservative approach is to assume the top-down 
value of 0.34 dB as an upper bound on the uncertainty. 
Combining it via root-sum-square addition with the GPS EIRP 
uncertainty of 0.24 dB noted in Section II.A gives the total 
uncertainty in NBRCS. Likewise, the trailing pair estimate of 
LES uncertainty of 0.50 dB should also be combined via root-
sum-square addition with the GPS EIRP uncertainty. The 
resulting total uncertainties in the L1 observables are given by 

 
NBRCS RMS uncertainty = 0.42 dB               (1) 

LES RMS uncertainty = 0.55 dB 

III. LEVEL 2 RETRIEVAL OF WIND SPEED 

The CYGNSS mission’s baseline wind speed retrieval 
algorithm, used to produce its Level 2 wind speed science data 
product, is described in detail in [11]. In summary, the 
algorithm uses Geophysical Model Functions (GMFs) which 
relate u10 to the L1 observables, NBRCS and LES.  The GMFs 
are derived empirically from a large population of coincident 
CYGNSS L1 measurements and independent estimates of u10 
made by either numerical weather prediction models, at low to 

 
Fig. 1. Trailing pair log(density) scatterplots of (left) normalized bistatic radar cross section (NBRCS) and (right) leading edge slope (LES) measurements by
CYGNSS The diagonal black dashed line is the line of 1:1 agreement. The color scale is the log10 of the number density of points  

 

Fig. 2. Trailing pair difference histograms of normalized bistatic radar cross
section (top) and leading edge slope (bot) measurements by CYGNSS. 
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moderate wind speeds, or instruments on NOAA P-3 hurricane 
hunter aircraft, at high wind speeds [14]. The low-to-moderate 
wind versions are referred to as the Fully Developed Seas 
(FDS) GMFs and the high wind versions as the Young 
Seas/Limited Fetch (YSLF) GMFs. They differ as a result of 
the sensitivity of the measurements to long wave swell, which 
tends to be significantly more under-developed in the high 
wind conditions experienced in tropical cyclones.  

Each GMF provides a unique mapping from u10 to an L1 
observable and the retrieval algorithm inverts it given a 
measurement of the observable. This produces two estimates 
of u10, one for each observable, and they are combined 
together by a minimum variance estimator to produce the final 
wind speed estimate [15]. Examples of the FDS GMFs, for 
low to moderate wind speeds, for both L1 observables are 
show in Fig. 3(top), and the YSLF GMFs at high wind speeds 
are shown in Fig. 3(bot). 

Several features of the GMFs are noteworthy. At wind 
speeds below 5-10 m/s, the slope of the GMF (dObs/du10) 
becomes very steep and small changes in wind speed 
correspond to large changes in the L1 observable. The 
component of wind speed retrieval error that is dependent on 
measurement error can be expected to be lowest in this 
regime. At higher wind speeds, the slope decreases markedly. 
The value of u10 at which this transition occurs differs for the 
two observables and also depends weakly on incidence angle. 
The component of wind speed error due to measurement error 
will be higher here. 

A. Bottom-up estimate of L2 uncertainty 

Bottom-up construction of an error model for the retrieved 
L2 wind speed consists of two parts. The uncertainty in 
measurement of the L1 observables, due both to measurement 

noise and calibration error, is scaled to a corresponding error 
in the wind speed using a propagation-of-errors analysis. 
Intrinsic error in the wind speed retrieval algorithm is also 
considered. Intrinsic error represents retrieval error that would 
have been present even if the measurements had been perfect. 
It accounts for such things as the dependence of the 
observable on other geophysical variables than wind speed 
which are not properly accounted for in the retrieval 
algorithm, or a non-unique mapping from wind speed to the 
observable. These two error sources are considered to be 
statistically independent and their RMS errors are combined 
by root-sum–square addition to produce the overall bottom-up 
uncertainty. 

For small errors in the L1 observable, the corresponding 
wind speed retrieval error can be estimated by linearizing the 
GMF. The resulting wind speed retrieval error is given by 

 

ଵ଴ሻݑை௕௦ሺߝ ൌ ቚ
ௗை௕௦

ௗ௨భబ
ቚ
ିଵ
                     (2)	ሻݏሺܱܾߝ

 
where (Obs) is the RMS error in either the NBRCS or LES 
observable, and the functional dependence of the observable 
on u10 as shown in Fig. 3. The values of the error are stated in 
eqn. (1). The slopes of the GMFs (dObs/du10) for both L1 
observables are shown in Fig. 4(top) for the low-to-moderate 
wind speed case and the slopes at high wind speeds are shown 
in Fig. 4(bot). Results are only shown for an incidence angle 
of 30 deg but the sensitivity is very similar at other angles. 

In both FDS and YSLF conditions, the NBRCS observable 
typically has a higher sensitivity to wind speed than does the 
LES observable. The exception is at wind speeds between ~10 
and 18 m/s in the FDS case, where LES sensitivity is slightly 
higher. Above ~18 m/s in FDS conditions, the LES observable 

  

  
Fig. 3. Geophysical Model Functions at low-to-moderate wind speeds in fully developed seas (FDS) (top row) and high wind speeds in young seas with limited
fetch (YSLF) conditions (bottom row) for the L1 observables NBRCS (left column) and LES (right column) at incidence angles of 10, 15, …, 55 deg 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

5

becomes very small and effectively loses sensitivity to 
changes in wind speed. In YSLF conditions, the sensitivity for 
both observables is low but constant at high (> 25 m/s) wind 
speeds.  

The component of uncertainty in L2 retrieved wind speed 
due to errors in the L1 observables follows directly from eqns. 
(1) and (2), using the values of dObs/du10 shown in Fig 4. 
Plots of the resulting values of (u10) with the NBRCS and 
LES observables are shown in Figs. 5(top) and 5(mid), 
respectively. Note that (u10) is in both cases close to zero at 
very low wind speeds due to the high sensitivity (large 
dObs/du10) there. Note also that (u10) becomes very large 
with the LES observable at wind speeds above ~18 m/s. This 
is consistent with its loss of sensitivity to wind speed, as seen 
in Figs. 3 and 4.  

The CYGNSS baseline L2 minimum variance (MV) 
retrieved wind speed is an inverse variance weighted average 
of the L2 winds derived from the two L1 observables. The 
component of its uncertainty due to errors in the L1 
observables is a similarly inverse variance weighted average 
of the two Obs(u10) values [13]. In addition, a third component 
of uncertainty is the intrinsic error in the retrieval algorithm 
itself, caused by the non-uniqueness of the relationship 
between u10 and the L1 observables. Intrinsic error is 
estimated using simulated observations produced by an end-
to-end simulator (E2ES) [14]. Simulated L1 measurements 
can be generated by the E2ES as a function of wind speed 
which are free of calibration errors. The RMS error in MV 
retrieval performance using these simulated data is found to be 
1.3 m/s for wind speeds below 25 m/s. The overall uncertainty 
in the MV wind speed can be expressed as 

 

ଵ଴ሻݑெ௏ሺߝ ൌ 	 ൬ሺߝ௜௡௧௥௜௡௦௜௖ሻଶ ൅ ቀ
ଵ

ሺఌಿಳೃ಴ೄሻమ
൅

ଵ
ሺఌಽಶೄሻమ

ቁ
ିଵ
൰
଴.ହ

					   (3) 

 
where intrinsic = 1.3 m/s and NBRCS and LES are given by eqn. 
(2) and shown in Figs. 5(top, mid). The resulting bottom-up 
uncertainty in the minimum variance retrieved wind speed, 
MV, is shown in Fig. 5(bot). At low wind speeds, 
contributions from L1 measurement error are small and the 
MV retrieval uncertainty is dominated by the intrinsic error.  
Above ~10 m/s, MV uncertainty begins to increase as the 
contributions from L1 measurement error become significant. 
Above ~18 m/s, the LES observable loses sensitivity to wind 
speed and the MV uncertainty is dominated by errors in the 
measurement of NBRCS.  

A bottom-up estimate of L2 wind speed uncertainty for high 
wind retrievals using the YSLF GMF follows the same 
approach, with the appropriate YSLF sensitivity values shown 
in Fig 4b used instead.  In and near tropical cyclones, the 
mission baseline science data product uses YSLF retrievals 
based only on the NBRCS L1 observable. This is done 
because of their significantly higher sensitivity at all wind 
speeds than retrievals based on the LES observable. The 
bottom-up YSLF uncertainty is shown in Fig. 6. In the figure, 
results are shown for different time averaging scenarios. The 
baseline CYGNSS L2 wind speed retrieval algorithm 
implements a variable amount of along-track averaging to 
account for changes in spatial resolution with incidence angle 
that result from the range of time delays and Doppler shifts, 
centered on the specular point values, which are used to 
compute the L1 observables [10]. Individual measurements at 
the highest incidence angles (> 50 deg) have spatial resolution 
of ~25 km so no additional averaging is performed. 
Measurements at the lowest incidence angles (< 15 deg) have 
spatial resolution of ~15 km and n=5 sequential samples are 
averaged to produce an effective 25 km resolution. 
Measurements at the center of the field of view (~ 30 deg) 

 
Fig. 4. Sensitivity (defined as dObs/du10) of the (top) FDS GMF and (bot)
YSLF GMF to wind speed  for L1 observables NBRCS (blue) and LES
(green) at an incidence angle of 30 deg.  

 

 
Fig. 5. Bottom-up L2 wind speed retrieval uncertainty for low-to-moderate
wind speeds in fully developed seas. (top) Component due to errors in L1
NBRCS observable; (mid) Component due to errors in L1 LES observable;
(bot) Overall uncertainty in minimum variance estimate, including
contributions from errors in both L1 observables and from intrinsic error in
the retrieval algorithm. 
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have n=3 sequential samples averaged to produce the same 
effective resolution of 25 km. Averaging reduces the 
component of L2 retrieval uncertainty due to L1 measurement 
error but not the intrinsic retrieval error. This is reflected in 
Fig. 6. At lower wind speeds, the total uncertainty is 
dominated by the intrinsic component and there is little 
dependence on the number of samples averaged. At higher 
wind speeds, L1 measurement errors are dominant and the 
total uncertainty decreases from 7.6 m/s for a single sample to 
4.0 m/s with 4 samples averaged together.  

B. Top-down estimate of L2 uncertainty 

Top-down assessment of the uncertainty in the L2 data 
product at low to moderate wind speeds uses near-coincident 
matchups between CYGNSS measurements and 10m 
referenced ocean surface wind speeds provided by the 
European Center for Medium-range Weather Forecasting 
(ECMWF) Numerical Weather Prediction model [16]. All 
CYGNSS measurements made during September and October 
2017 are used in the analysis. ECMWF winds, reported on a 
0.25 deg grid, are bi-linearly interpolated in space and linearly 
interpolation in time to the location and time of the CYGNSS 
measurements. Several quality control filters are applied to the 
matchup data. The ECMWF values are compared to similarly 
interpolated gridded outputs from the Global Data 
Assimilation System (GDAS) Numerical Weather Prediction 
model [17] and a matchup is discarded if ECMWF and GDAS 
differ by more than 3 m/s.  CYGNSS quality control filters 
include the use of samples that lie in the main beam of the 
nadir antenna footprint at antenna gain values within ~10 dB 
of the peak gain. In addition, samples are excluded if the GPS 
satellite is of block type IIF. These satellites have been found 
to suffer from considerably more transmit power variability 
than the earlier block types (IIR and IIR-M). After all quality 
control filters are applied, the total number of remaining pairs 
of samples in the matchup population is 30,883,518. 

A density scatterplot of the matchup samples is shown in 
Fig. 7. The scatterplot is logarithmic in number density of 
samples to more clearly illustrate the distribution of samples 

both in the region of highest density and in the outlier regions 
with larger retrieval errors. The highest density of samples 
occurs along the 1:1 line where ECMWF and CYGNSS winds 
agree. Asymmetry in the distribution of samples away from 
the 1:1 line can introduce biases into the retrieval (non zero-
mean differences between CYGNSS and ECMWF). 
Asymmetries can be seen in the figure to increase at higher 
wind speeds. 

The mean and RMS differences between ECMWF and 
CYGNSS wind speeds are shown in Fig. 8 as a function of 
(top) ECMWF, (mid) CYGNSS, and (bot) the average of 
ECMWF and CYGNSS wind speeds. The dependence of the 
mean difference (or bias) on wind speed is markedly different 
in each of these three cases. The dependence of bias on 
ECMWF wind speed is slightly negative at lower wind speeds, 
has a zero-crossing to positive bias near 9 m/s, and grows 
increasingly positive at higher wind speeds. Since the bias is 
reported as (ECMWF – CYGNSS), this indicates that 
CYGNSS overestimates lower wind speeds and 
underestimates higher wind speeds. The dependence of bias on 
CYGNSS wind speed is slightly positive at lower wind 
speeds, has a zero-crossing to negative bias near 7 m/s, and 
then grows increasingly negative at higher wind speeds. The 
difference in sign of the small bias at low wind speeds in Figs. 
8(top) and 8(mid) results because, while CYGNSS tends to 
overestimate low wind conditions (as reported by ECMWF) 
by several tenths of a meter-per-second, its underestimation at 
high winds is significantly larger in magnitude, resulting in an 
overall shift in the low wind bias to several tenths of a meter-
per-second positive when sorted by the CYGNSS reported 
wind.  The larger difference in sign and magnitude between 
Figs. 8(top) and 8(mid) at higher wind speeds results from the 
larger magnitude of the bias there, which produces a larger 
swing between sorting options. The dependence of bias on the 
average of ECMWF and CYGNSS winds shown in Fig. 8(bot) 

Fig. 6. Bottom-up L2 wind speed retrieval uncertainty for high wind speeds
in young seas with limited fetch. The family of curves represents different
numbers, n, of sequential samples averaged together. The number varies to
account for the dependence of spatial resolution on incidence angle, with
n=1 above 50 deg, n=5 below 15 deg, and n=3 near the center of the field of
view at 30 deg.  

Fig. 7. Log(density) scatterplot of CYGNSS and matchup ECMWF “ground
truth” wind speed samples used for top-down determination of wind speed
retrieval uncertainty below 20 m/s. The diagonal black dashed line is the line
of 1:1 agreement. The color scale is the log10 of the number density of points.
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lies roughly half way between the other two cases, with 
negligible bias at low winds and a small negative bias above 
~15 m/s.  

The behavior of the RMS difference vs. wind speed is 
similar in all three cases.  It includes a primary contribution 
from the CYGNSS retrieval errors plus smaller secondary 
contributions from errors in the original ECMWF wind fields 
and possible errors introduced by the spatial and temporal 
interpolation process used to align the two data sets. 
Comparing the bottom-up uncertainty estimate shown in Fig. 
5c with the top-down one in Fig. 8 several common traits are 
evident. The RMS uncertainty rises only gradually with wind 
speed below ~10 m/s, with values slightly below 2 m/s (the 
fraction of this value due to CYGNSS will depend on the 
allocation for errors in ECMWF and in the interpolation). The 
bottom-up error model attributes this fairly flat dependence to 
the fact that the intrinsic component of retrieval error is the 
dominant contributor. The uncertainty rises more steeply 
above 10 m/s in both cases. The bottom-up error model 

attributes the steeper rise to the decreasing sensitivity of the 
L1 observables to wind speed, and hence the increased 
sensitivity of the retrieved wind speed to errors in 
measurement of those observables. RMS uncertainty rises to 
~4 m/s at 20 m/s for the bottom-up estimate and ~6 m/s for the 
top-down estimate. The difference is likely attributable to the 
bias evident in the top-down comparison, which is small 
below ~ 12 m/s but increases at higher wind speeds. Bias 
removal, either algorithmically or through improved 
calibration of the L1 observables, is a continuing topic of 
research by the CYGNSS science team. The overall RMS 
difference, including all samples with ECMWF winds below 
20 m/s, is 1.96 m/s. This value is weighted by the distribution 
of wind speeds in the matchup population, which is 
approximately Rayleigh distributed with a mean near 7 m/s. 

For a top-down estimate of uncertainty at high wind speeds 
in tropical cyclones, matchups are compiled from twenty-five 
(25) coincident overpasses of hurricanes by CYGNSS and 
NOAA P-3 “hurricane hunter” aircraft that occurred during 
the 2017 Atlantic hurricane season. Coincidence is defined by 
locating the aircraft ground track during one of its eyewall 
penetrations that was closest to a CYGNSS specular point 
track for that overpass and requiring that they occurred within 
60 min of one another.  The 25 cases identified in this way 
include overpasses of Hurricanes Harvey, Irma and Maria. 
Comparison wind speeds were measured by Stepped 
Frequency Microwave Radiometers (SFMRs) installed on the 
P-3 aircraft [18].  There are a total of 674 pairs of wind speed 
samples in this matchup population, which is significantly 
smaller than the size of the sample population used for low-to-
moderate winds.  

Estimation of the uncertainty in CYGNSS wind speed 
retrievals in and near hurricanes is done in two ways, first by 
qualitatively examining individual hurricane overpasses and 
examining the impact of time averaging on the retrievals, and 
second by quantitatively comparing the population of matchup 
samples.  Three examples of hurricane overpasses are shown 
in Fig. 9. Both the winds retrieved by CYGNSS and measured 
by the Stepped Frequency Microwave Radiometer (SFMR) on 
the P-3 are shown. Two versions of the CYGNSS winds are 
included – one with the standard 1 sec integration time that is 
performed on-board in real time, and one with a 4 sec running 
average applied in ground processing. Time-averaging can be 
seen to considerably reduce the random noise present in the 1 
sec values. This is consistent with the behavior predicted by 
the bottom-up analysis, as illustrated in Fig. 6. With 1 sec 
averaging (n = 1 in Fig. 6), the RMS uncertainty is estimated 
to be ~6 m/s. This decreases to ~3 m/s with 4 sec averaging (n 
= 4 in Fig. 6). One noteworthy characteristic of the overpass 
matchups shown in Fig. 9, and found in many similar 
matchups, is the apparent time offset between the SFMR and 
CYGNSS winds. Minimum and maximum wind speed values 
and general trends tend to agree more than do second-by-
second direct comparisons. This can be explained by the 
nature of the measurements. The specular point tracks of 
CYGNSS measurements do not exactly align in position with 
the P-3 flight tracks, and the time required to sample those 

 
Fig. 8. RMS and mean difference between matchup CYGNSS and ECMWF
wind speeds plotted vs. three difference measurements of wind speed: (top)
ECMWF; (mid) CYGNSS; and (bot) the average of ECMWF and CYGNSS. 
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tracks is several minutes for CYGNSS vs. several tens of 
minutes for the P-3. For these reasons, an alternative to direct 
point-by-point comparisons is considered for a quantitative 
performance assessment. 

The top-down performance assessment of CYGNSS 
retrievals at low to moderate wind speeds made use of the fact 
that gridded NWP products, reported at regular time intervals, 
could be interpolated to the time and place of CYGNSS 
observations. The point-by-point RMS differences between 
them were used in the top-down assessment reported above. 
For the comparison between CYGNSS and SFMR winds 
during hurricane overpasses, such an approach is more 
problematic for several reasons.  The sparse sampling in time 
and space of SFMR data is less amenable to interpolation and 
the conditions in and near the storm centers are much more 
variable over short distances and time differences. For these 
reasons, rather than using a point-by-point RMS difference, 

the expected value of the RMS difference is evaluated 
statistically by considering the individual histograms of wind 
speeds measured by the two sensors as proxies for their 
probability density functions (PDFs).  

The RMS difference between CYGNSS and SFMR wind 
speed measurements in tropical cyclones can be expressed as 

 

஼்ߝ 	ൌ 	 ቀ׬ ሺݑ஼௒ீ െ ,஼௒ீݑሺ݌ௌிெோሻଶݑ ௎ݑௌிெோሻ݀ݑ ቁ
଴.ହ
					   (4) 

 
where uCYG and uSFMR are the wind speed measurements made 
by CYGNSS and SFMR, respectively, p(uCYG, uSFMR) is their 
joint PDF, and the integral is performed over the range of 
wind speeds, U, for which the RMS difference is evaluated.  
The squared-difference in eqn. (4) can be expanded and the 
expected value of its terms evaluated individually, giving 

 
஼்ߝ ൌ ሺ൏ ஼௒ீݑ

ଶ ൐ െ2 ൏ ஼௒ீݑ ൐൏ ௌிெோݑ ൐ ൅൏ ௌிெோݑ
ଶ ൐	ሻ଴.ହ   (5) 

 
where 

൏ ஼௒ீݑ ൐	ൌ ׬	 ௎ݑ஼௒ீሻ݀ݑሺ݌஼௒ீݑ 					           (6a) 

൏ ௌிெோݑ ൐	ൌ ׬	 ௎ݑௌிெோሻ݀ݑሺ݌ௌிெோݑ 					      (6b) 

൏ ஼௒ீݑ
ଶ ൐	ൌ ׬	 ஼௒ீݑ

ଶ ௎ݑ஼௒ீሻ݀ݑሺ݌ 					           (6c) 

൏ ௌிெோݑ
ଶ ൐	ൌ ׬	 ௌிெோݑ

ଶ ௎ݑௌிெோሻ݀ݑሺ݌ 					      (6d) 

where p(uCYG) and p(uSFMR) are the individual PDFs of the two 
wind speeds. It is assumed that they are independent so their 
joint PDF is separable.  Normalized versions of the histograms 
of wind speed samples taken by SFMR and CYGNSS during 
the hurricane overpasses are shown in Fig. 10. They are used 
as proxies for the PDFs appearing in eqn. (6). 

Two versions of the CYGNSS wind speed are considered – 
one with native 1 sec time averaging and one with an 
additional 4 sec running average applied in ground processing. 
Examples of the two versions were shown in Fig. 9 during 

 
Fig. 9. Examples of CYGNSS overpasses of Hurricane Maria coincident with
NOAA P-3 hurricane hunter aircraft flight on: (top) 21 Sep 2017 at 17:12
UTC; (mid) 23 Sep 2017 at 18:07 UTC; and (bot) 24 Sep 2017 at 18:17
UTC. P-3 measurement of 10 m referenced wind speed by Stepped
Frequency Microwave Radiometer shown in green. CYGNSS 10 m
referenced wind speed measurements shown with 1 sec (red dashed) and 4
sec (solid blue) time averaging. 

Fig. 10. Estimates of wind speed probability density function derived from
histograms of wind speed sampled by SFMR and CYGNSS during coincident
hurricane overpasses. Two versions of the CYGNSS PDF are shown, with
native 1 sec time averaging (mid), and with 4 sec time averaging (bot). 
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hurricane overpasses. PDFs derived from the wind speed 
measurements in each case are shown in Fig. 10. Note in Fig. 
10 that, with 1 sec averaging, there are some CYGNSS 
measurements at wind speeds much higher than the maximum 
SFMR observations, and the distribution of wind speeds 
sampled is generally more uniformly distributed than that of 
the SFMR PDF. Both of these characteristics can be attributed 
to the large additive noise that is present in the measurements 
with 1 sec time averaging. With 4 sec time averaging, on the 
other hand, the anomalously high wind speed values have 
been averaged out and the distribution of measurements at 
lower wind speed values is generally less uniform and more 
similar to that of the SFMR distribution.  

The RMS difference between SFMR and CYGNSS 
measurements can be estimated using eqns. (5) and (6) and the 
PDFs derived from the histograms. The result with 1 sec 
averaging is 6.75 m/s and with 4 sec averaging is 6.45 m/s. 
Note that: a) the value of observed RMS difference with 4-s 
averaging is higher than that predicted by the bottom-up 
approach; and b) the decrease in observed RMS difference due 
to averaging is smaller than predicted. Both of these 
characteristics can be explained by assuming that a significant 
level of additional intrinsic retrieval error is present, above 
that assumed in the case of fully developed seas. The 
additional intrinsic error is likely at least in part a result of the 
rather ad hoc approach taken by the L2 retrieval algorithm 
which partitions the sea state into two distinct regimes, fully 
developed seas and young seas with limited fetch. In reality, 
fetch length and sea age are continuously varying sea state 
conditions and the simplifying approach taken by the retrieval 
algorithm can be expected to introduce additional errors. 
Generalization of the current algorithm approach to more 
accurately incorporate variations in sea age and fetch length, 
in general and near tropical cyclones in particular, is a 
continuing topic of research by the CYGNSS project team. 

C. Rolled up performance assessment 

The overall top-down RMS difference between CYGNSS 
and ECMWF wind speeds, including all coincident matchup 
samples for which ECMWF winds are less than or equal to 20 
m/s, was found to be 1.96 m/s. Note that this value includes 
components of error due to both CYGNSS and ECMWF 
uncertainty as well as interpolation errors associated with 
estimating ECMWF winds at the time and place of the 
CYGNSS samples. As such, it should be considered an upper 
bound on the uncertainty in the CYGNSS values. The 
uncertainty in ECMWF reported wind speeds has been 
assessed by intercomparisons with a large number of deep 
water NDBC buoy measurements during 1979-2009 [19]. The 
RMS error in ECMWF reanalysis winds over the tropics was 
found to be 1.33 m/s.  If this error is removed from the overall 
1.96 RMS difference (using root-difference-square 
subtraction), the remaining uncertainty in the CYGNSS wind 
speed is 1.44 m/s.  

The top-down RMS difference between CYGNSS and 
SFMR wind speeds, including matchups taken during mutual 
hurricane overpasses and using samples for which SFMR 

winds are greater than or equal to 20 m/s, was found to be 6.45 
m/s with 4 sec time averaging of the CYGNSS data. For this 
sample population, the average SFMR wind speed was 29.35 
m/s. As in the lower wind speed case, this value should be 
considered an upper bound on CYGNSS uncertainty because 
the RMS difference statistic also includes errors in the SFMR 
measurement of wind speed and the effects of temporal and 
spatial decorrelation because the two measurements are not 
made at exactly the same time and place. The uncertainty in 
SFMR reported wind speeds up to 70 m/s has been assessed 
by intercomparisons with 186 coincident dropwindsonde 
measurements made on 70 hurricane hunter aircraft flights 
during the 2005 Atlantic hurricane season [18]. The RMS 
difference between SFMR and dropsindsonde 10 m referenced 
wind speeds was found to be 4 m/s.  If this error is removed 
from the overall 6.45 RMS difference (using root-difference-
square subtraction), the remaining uncertainty in the CYGNSS 
wind speed is 5.01 m/s. As a fraction of the average SFMR 
wind speed of 29.35 m/s, the high wind CYGNSS retrieval 
uncertainty is 17.2%. 

IV. DISCUSSION 

Bottom-up and top-down approaches to assessing the 
uncertainty in CYGNSS wind speed measurements show some 
similarities and some differences, both of which provide some 
insight into the characterization of performance. At low-to-
moderate wind speeds using the retrieval algorithm based on a 
fully developed seas geophysical model function (GMF), the 
agreement between bottom-up model predictions and top-
down empirical comparisons with “ground truth” winds is 
generally good, both in terms of the absolute value of the 
RMS uncertainty and the relative dependence of the 
uncertainty on wind speed. Below ~15 m/s, the retrieval error 
grows slowly with wind speed as the sensitivity of the 
measurements to wind speed (the slope of the GMF) 
decreases. Above 15 m/s, retrieval error increases more 
rapidly, both because of a further decrease in sensitivity and 
an increase in the retrieval bias (the mean difference between 
retrieved and ground truth wind speeds). A lower sensitivity 
on the part of the L1 observable to changes in high wind 
speeds produces larger random errors due to measurement 
noise as well as larger biases in the retrieved wind speed due 
to calibration offsets. It is hoped that future refinements in 
instrument calibration will lower the L1 bias, decrease the 
resulting L2 wind speed bias, and, ultimately, improve the 
overall uncertainty. 

The GMF used by the CYGNSS wind speed retrieval 

algorithm is constructed from ECMWF and SFMR u10 winds 
at low and high wind speeds, respectively. Both of these report 
actual 10 m referenced values, whereas the CYGNSS 
scattering measurements, which are sensitive to surface 
roughness forced by wind stress, should be more directly 
related to the equivalent neutral wind speed [20], [21]. The 
difference between the actual and equivalent neutral wind 
speeds is estimated to be 0.2 m/s globally [22], [23], and this 
difference will contribute to the error in CYGNSS retrievals of 
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actual wind speed. A possible future refinement for CYGNSS 
is the retrieval of 10 m equivalent neutral wind speed, similar 
to the practice in ocean wind scatterometry, to eliminate this 
source of error. 

The discrepancy between bottom-up and top-down 
performance estimates is larger at high wind speeds using the 
retrieval algorithm based on the young seas/limited fetch 
GMF. The bottom-up model predicts that retrieval noise can 
be significantly reduced by time averaging of the data, and this 
is borne out by the behavior of the observations. Individual 
measurements are made with a 1 sec average. Additional time 
averaging is performed in ground processing, with 3-5 sec of 
averaging typically used to produce a wind speed product with 
25 km spatial resolution. The discrepancy between bottom-up 
and top-down performance is likely attributable at least in part 
to the use of a simplified two-regime approach by the wind 
speed retrieval algorithm to account for variations in sea age 
and fetch length in and near tropical cyclones. It uses a single 
limited fetch GMF when near a storm, without regard for the 
continuously varying transition that actually occurs from a 
fully developed state far from the storm center. A more 
proper, physically based, approach should account for this 
transition zone and should also consider the variability of sea 
age, fetch length and the resulting long wave swell within the 
storm, e.g. as a function of storm quadrant. This is also an area 
of active research by the CYGNSS science team, with the 
expectation that future versions of the L2 wind speed retrieval 
algorithm will incorporate ancillary information about the sea 
state, either by adjusting the GMF or the L1 observables 
appropriately. 

The mission level requirements on wind speed measurement 
uncertainty are +/- 2 m/s at wind speeds below 20 m/s and +/-
10% above 20 m/s. The top-down performance assessment of 
1.4 m/s uncertainty at low-to-moderate wind speeds using the 
FDS GMF demonstrates that the requirement has been met 
below 20 m/s. At higher wind speeds, the top-down 
assessment using the YSLF GMF during hurricane overpasses 
demonstrates a 17% uncertainty and the requirement has not 
been met. Future improvements to the retrieval algorithm will 
focus on two primary sources of error. Calibration of the L1 
observables can be improved, most notably by lowering the 
uncertainty in knowledge of the GPS EIRP through better 
characterization of the transmitter properties of the GPS 
constellation of satellites [13]. Improved L1 calibration should 
ameliorate the increase in retrieval uncertainty that occurs at 
higher wind speeds because the sensitivity of the L1 
observables to changes in wind speed is reduced. At high wind 
speeds in tropical cyclones, the dependence of the L1 
observables on long wave swell, in addition to wind driven 
capillary waves, is another significant source of retrieval error. 
Future improvements will attempt to incorporate ancillary sea 
state information to better account for this sensitivity. The 
improvement to L1 calibration should improve performance 
and reduce uncertainty at all wind speeds. An improved sea 
state-dependent retrieval algorithm should further reduce the 
uncertainty at high wind speeds. Between those two 
improvements, the high wind measurement uncertainty of 

17% should be lowered closer to the original 10% mission 
requirement.  
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