CYGNSS Mission Updates

Watch the CYGNSS mission launch! (16:40)

Air-launch of Pegasus XL, and stage-by-stage CYGNSS microsatellite deployment.

Pegasus XL rocket carries CYGNSS to orbitFlying over the Atlantic Ocean offshore from Daytona Beach, Florida, a Pegasus XL rocket with eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is released from the Orbital ATK L-1011 Stargazer aircraft and the first stage ignites at 8:37 a.m. EST. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes. Credits: NASA

Stay current with CYGNSS mission happenings here

-----------------------------------------------------------------------------------------------------

Spet. 27, 2017

First Atlantic hurricane observations by CYGNSS

Principal Invesitgator professor Chris Ruf talks about the first CYGNSS hurricane obsverations of the satellite constellation's inaugural season.

Here's the latest entry on the CYGNSS NASA Earth Observatory blog:

"The CYGNSS constellation has been operating in its science data-taking mode continuously since March 2017. The satellite hardware has been performing as designed while we make adjustments to the software on-board and on the ground so we are better able to operate smoothly and autonomously. We also spent much of the summer working on the relative spacing between the satellites, by adjusting their differential drag and, as a result, their relative orbital velocities..."

Read the full post...

-----------------------------------------------------------------------------------------------------

Aug. 27, 2017

Earth Observatory: Flying into Hurricane Harvey

As Hurricane Harvey neared the coast of Texas, CYGNSS Principal Invesitgator professor Chris Ruf was at the NOAA Airborne Operations Center in Lakeland, FL preparing to take off with the crew of a P-3 "Hurricane Hunter" aircraft. The Hurricane Hunters regularly fly through hurricanes to help forecasters and scientists gather both operational and research data, and this mission would penetrate Harvey just before it made landfall.

Professor Ruf has written an account of the mission on the CYGNSS NASA Earth Observatory blog:

"I had the good fortune to join the crew of the NOAA P-3 “hurricane hunter” plane that flew into Harvey on 25 Aug 2017 shortly before it made landfall in Texas. We made six pairs of eyewall penetrations. The maximum surface level winds continued to grow with each successive one as we witnessed Harvey’s rapid intensification from a Cat 2 to Cat 4 hurricane. We were able to capture much of that dynamic transition, using continuous radar and radiometer remote sensing measurements plus frequent in situ measurements by dropsondes. These will be used to help calibrate and validate our measurements by CYGNSS, which have been ongoing since Harvey first started to develop earlier in the week. Following is a description of my experience that day..."

Read the full post...

-----------------------------------------------------------------------------------------------------

MAR. 31, 2017

CYGNSS Satellite Constellation Enters Science Operations Phase

NASA’s Cyclone Global Navigation Satellite System (CYGNSS) -- a constellation of eight microsatellites that will take detailed measurement of windspeeds inside hurricanes -- successfully completed the development and on-orbit commissioning phases of its mission on March 23 and moved into the science operations phase. The spacecraft have now begun their science instrument calibration and validation and are on track to deliver the first science data in May, just in time for the start of the 2017 Atlantic hurricane season. The CYGNSS spacecraft, launched into low-inclination, low-Earth orbit over the tropics on December 15, will make frequent measurements of ocean surface winds in and near a hurricane’s inner core, an area that up until now has proven impossible to probe accurately from space. CYGNSS is able to measure the surface winds using GPS signals reflected by the ocean surface, which are able to penetrate through the intense rain in a storm’s eye wall.

Read more...

-----------------------------------------------------------------------------------------------------

Mar. 10, 2017

"First Light” Science Measurements by CYGNSS Satellite

The latest update from CYGNSS mission Principal Investigator, Professor Chris Ruf.

-----------------------------------------------------------------------------------------------------

NASA CYGNSS Mission Blog

This is the official NASA blog for the CYGNSS mission. Read the latest updates from Professor Chris Ruf, principal investigator, as well as other CYGNSS mission personnel.

-----------------------------------------------------------------------------------------------------

Jan. 11, 2017

"CYGNSS Launch: The Human Side"

Here's a personal account of the CYGNSS launch and the days that followed from John Noonan, who worked as a flight controller for the launch.

-----------------------------------------------------------------------------------------------------

Earth Oservatory Notes from the Field

The Earth Observatory’s mission is to share with the public the images, stories, and discoveries about the environment, Earth systems, and climate that emerge from NASA research, including its satellite missions, in-the-field research, and models.

Read the CYGNSS launch dispatches from Dr. Mary Morris. Dr. Morris is a student in the University of Michigan Departent of Climate and Space Sciences and Engineering, and a member of the CYGNSS mission science team. Dr. Morris received her doctorate this past December.

-----------------------------------------------------------------------------------------------------

Jan. 5, 2017

CYGNSS Hurricane Mission Measures “First Light” Science Data

NASA’s Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight spacecraft made its “first light” measurements of the ocean surface on Jan. 4, 2017. Measurements were made by one of the eight spacecraft, and mission scientists plan to activate the science instruments on the other seven in the near future. Direct measurements are made of the GPS power reflected by the ocean surface, from which near-surface wind speed can be derived over tropical oceans and, in particular, inside hurricanes.

​CYGNSS was launched on Dec. 15, 2016, at 8:37 a.m. EST into a low-inclination, low-Earth orbit over the tropics. The CYGNSS constellation will make frequent and accurate measurements of ocean surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space.

Direct science measurements are displayed as a Delay Doppler Map (DDM), which shows the GPS power reflected by the ocean in the vicinity of the targeted measurement location. One such DDM is shown here, measured by constellation spacecraft FM03 on January 4, 2017, at 11:48:31 a.m. EST/15:48:31 UTC in the South Atlantic Ocean, east of Brazil.

“Our first light DDMs are direct confirmation that the CYGNSS science instrument on FM03 is operating as expected,” said Christopher Ruf, CYGNSS principal investigator at the University of Michigan’s Department of Climate and Space Sciences and Engineering in Ann Arbor. “There are still many steps ahead of us leading to reliable improvements in hurricane forecasts, but this was a critical one and it feels great to have it behind us.”

CYGNSS is the first of the missions competitively selected through NASA’ Earth Venture Program to launch into orbit.  The Earth Venture Program is managed by the Earth System Science Pathfinder (ESSP) Program Office at NASA’s Langley Research Center, Hampton, Virginia. This program focuses on low-cost, science-driven missions to enhance our understanding of the current state of the complex, dynamic Earth system and to enable continual improvement in the prediction of future changes.

The CYGNSS mission is led by the University of Michigan, with the Southwest Research Institute in San Antonio, Texas, leading the engineering development and operation of the constellation. The University of Michigan Climate and Space Sciences and Engineering department leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

-----------------------------------------------------------------------------------------------------

Dec. 15, 2016, NASA RELEASE 16-119

New NASA Hurricane Tracking Mission on Track

NASA confirmed Friday morning that all eight spacecraft of its latest Earth science mission are in good shape. The Cyclone Global Navigation Satellite System (CYGNSS) will provide scientists with advanced technology to see inside tropical storms and hurricanes like never before.

CYGNSS launched into orbit at 8:37 a.m. EST Thursday aboard an Orbital ATK air-launched Pegasus XL launch vehicle. The rocket was dropped and launched from Orbital’s Stargazer L-1011 aircraft, which took off from Cape Canaveral Air Force Station in Florida, over the Atlantic Ocean, off the coast of central Florida.

“The launch of CYGNSS is a first for NASA and for the scientific community,” said Thomas Zurbuchen, associate administrator for the agency’s Science Mission Directorate in Washington. “As the first orbital mission in our Earth Venture program, CYGNSS will make unprecedented measurements in the most violent, dynamic, and important portions of tropical storms and hurricanes.”

The CYGNSS constellation will make frequent and accurate measurements of ocean surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space. CYGNSS will do this by using both direct and reflected signals from existing GPS satellites to obtain estimates of surface wind speed over the ocean.

“CYGNSS will provide us with detailed measurements of hurricane wind speeds, an important indicator of a storm’s intensity,” said Christopher Ruf, CYGNSS principal investigator at the University of Michigan’s Department of Climate and Space Sciences and Engineering in Ann Arbor. “Ultimately, the measurements from this mission will help improve hurricane track and intensity forecasts.”

CYGNSS is the first orbital mission competitively selected by NASA’s Earth Venture program, managed by the Earth System Science Pathfinder (ESSP) Program Office at NASA’s Langley Research Center, Hampton, Virginia. This program focuses on low-cost, science-driven missions to enhance our understanding of the current state of Earth and its complex, dynamic system and enable continual improvement in the prediction of future changes.

“There is a feeling of pride and joy knowing that you have been a part of something that is much bigger than yourself and will potentially have a significant positive impact on the general public safety,” said Jim Wells, ESSP mission manager.

Southwest Research Institute in San Antonio led the development, integration and operation of the CYGNSS microsatellites. The Space Physics Research Laboratory at the University of Michigan College of Engineering leads the overall mission execution, and its Climate and Space Sciences and Engineering department leads the science investigation. The Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

The NASA Launch Services Program, based at the agency’s Kennedy Space Center in Florida, was responsible for spacecraft/launch vehicle integration and launch management. Orbital ATK Corp. of Dulles, Virginia, provided the Pegasus XL launch service to NASA.



NASA Ames Research Center
University of Michigan
Southwest Research Institute of Texas
Surrey Satellite Technology of Colorado