Assistant Professor Jeremy Bassis

Jeremy Bassis

Associate Professor

Department of Climate and Space Sciences and Engineering, College of Engineering, University of Michigan


Contact

Email: jbassis@umich.edu

Phone:  (734) 615-3606

Office: 2529 Space Research Building

2455 Hayward St.
Ann Arbor, MI 48109-2143

Publications

  • Bassis, J.N., B. Berg, A. J. Crawford, D. I. Benn, (2021), Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science. Vol. 372, Issue 6548, pp. 1342-1344
  • Crawford. A.J., D. Benn, J. Åström, J.N. Bassis, T. Zwinger, (2021), Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nature Communications. 12(9): 2701
  • Walker, C.C., J.N. Bassis, (2021), Propagation of vertical fractures through planetary ice shells: The role of basal fractures at the ice-ocean interface and proximal cracks. Planetary Science Journal. Volume 2, Issue 4, id.135, 15 pp
  • Slater, D., D. Benn, T.R. Cowton, J.N. Bassis, J.A. Todd, (2021), Calving multiplier effect controlled by melt undercut geometry. Journal of Geophysical Research: Earth surfaces. 126, e2021JF006191. https://doi.org/10.1029/2021JF006191
  • Duddu, R., Jiménez, S., J.N. Bassis, (2020), A non-local continuum poro-damage mechanics model for hydrofracturing of surface crevasses in grounded glaciers. Journal of Glaciology. 66(257): 415-429
  • Kachuck, S. B., D. F. Martin, , J.N. Bassis, (2020),  Rapid viscoelastic deformation slows marine ice sheet instability at Pine Island Glacier. Geophysical Research Letters. 47: e2019GL086446
  • Ultee, L., J.N. Bassis, SERMeQ model produces a realistic upper bound on calving retreat for 155 Greenland outlet glaciers. (2020), Geophysical Research Letters. 2020; 47: e2020GL090213
  • Berg, B., J.N. Bassis, (2020), Brief communication: Time step dependence (and fixes) in Stokes simulations of calving ice shelves". The Cryosphere. 2020; 14: 3209–3213
  • J.N. Bassis, Ultee, L., (2019), A thin film viscoplastic theory for calving glaciers: Toward a bound on the calving rate of glaciers. Journal of Geophysical Research: EarthSurface.  124: 2036-2055
  • Ma, Y., J.N. Bassis, (2019), The effect of submarine melting on calving from marine terminating glaciers. Journal of Geophysical Research: Earth Surface . 2019; 124
  • Ultee, L., Arnott, J., J.N. Bassis, Lemos, M.C., (2018), From Ice Sheets to Main Streets: Intermediaries Connect Climate Scientists to Coastal Adaptation. Earth’s Future. 6(299–304)
  • Ma, Y., C. S. Tripathy*, J.N. Bassis, (2017), Bounds on the calving cliff height of marine terminating glaciers. Geophysical Research Letters.  44: 1,369- 1,375
  • Ultee, L. and J. N. Bassis, (2017), A plastic network approach to model calving glacier advance and retreat. Frontiers in Earth Science 5. https://doi.org/10.3389/feart.2017.00024.
  • Bassis, J.N., S.V. Petersen, L Mac Cathles, (2017), Heinrich events triggered by ocean forcing and modulated by isostatic adjustment, Nature, 332–334, doi:10.1038/nature21069
  • Ma, Y., C. S. Tripathy*, and J. N. Bassis, (2017), Bounds on the calving cliff height of marine terminating glaciers, Geophys. Res. Lett., 44, 1369–1375, doi:10.1002/2016GL071560.
  • Chester, M., Kulessa, B., Luckman, A., Bassis, J.N, & Kuipers Munneke, P., (2017), Systems Analysis of complex glaciological processes and application to calving of Amery Ice Shelf, East Antarctica. Annals of Glaciology, 58(74), 60-71. doi:10.1017/aog.2017.1.
  • Jiménez, S., Duddu, R., and Bassis, J.N., (2017), An updated-Lagrangian damage mechanics formulation for modeling the creeping flow and fracture of ice sheets. Computer Methods in Applied Mechanics and Engineering, 313, 406-432.
  • Mobasher, M., Duddu, R., Bassis, J.N., and Waisman, H. (2016). Modeling hydraulic fracture of glaciers using continuum damage mechanics. Journal of Glaciology, 62(234), 794-804. doi:10.1017/ jog.2016.68
  • Jeong, S., I. M. Howat, and J. N. Bassis (2016), Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 43, 11,720–11,725, doi:10.1002/2016GL071360.
  • Ultee, L., & Bassis, J.N., (2016), The future is Nye: An extension of the perfect plastic approximationto tidewater glaciers. Journal of Glaciology, 62(236), 1143-1152. doi:10.1017/jog.2016.108
  • Liu, Y., Moore, J.C., Cheng, X., Gladstone, R.M., Bassis, J.N., Liu, H., Wen, J. and Hui, F., (2015), Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, Proceedings of the National Academy of Sciences112.11, 3263-3268.
  • Walker, C., Bassis, J.N., Fricker, H., & Czerwinski, R*, (2015), Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002–14. Journal of Glaciology, 61(226), 243-252. doi:10.3189/2015JoG14J151
  • Bassis, J.N. and Y. Ma, (2014), Evolution of Basal Crevasses Links Ice Shelf Stability to Ocean Forcing, Earth and Planetary Science Letters, 10.1016/j.epsl.2014.11.003.
  • Heeszel, D., H.A. Fricker , J.N. Bassis, S. O'Neel and F. Walter, (2013), Seismicity within a propagating ice shelf rift: The relationship between icequake locations and ice shelf structure, Journal of Geophysical Research- Earth Surfaces
  • Walker C.C., R. Czerwinski, J.N. Bassis and H.A. Fricker, (2013), Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring, Journal of Geophysical Research- Earth Surfaces, in press.
  • Bassis, J.N., and Jacobs, S., (2013), Diverse calving patterns linked to glacier geometry. Nature, 6(10), 833-836.
  • Duddu, R., J.N. Bassis, and H. Waisman, (2013), A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics, Geophysical Research Letters, 40, 3064–3068, doi:10.1002/grl.50602.
  • Walker, C.C., J.N. Bassis and M. Liemohn, (2012), On the application of simple rift basin models to the South Polar Region of Enceladus, Journal of Geophysical Research- Planets, 117, E07003, doi:10.1029/2012JE004084.
  • Bassis, J.N., C.C. Walker, (2012), Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, Proceedings of the Royal Society, doi: 10.1098/rspa.2011.0422, 1-18.
  • Cathles, L.M., D.S. Abbot, J.N. Bassis, D.R. MacAyeal, (2011), Modeling surface-roughness/solar-ablation feedback: Application to small-scale surface channels and crevasses of the Greenland Ice Sheet, Annals of Glaciology, 52(59), p. 99-108.
  • Bassis, J.N., (2011), The statistical physics of iceberg calving and the emergence of universal calving laws, Journal of Glaciology, 57, 3-16. Profiled
  • Walter, F., S. O’Neel, D.E. McNamara, T. Pfeffer, J.N. Bassis and H.A. Fricker., (2010), Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophysical Research Letters, 37(15), L15501. (10.1029/2010GL043201.) Editors highlight
  • Bassis, J.N., (2010) , Hamilton’s Principle Applied to Ice Sheet Dynamics: New approximations for the large-scale flow of ice sheets, Journal of Glaciology, (56)97, 497-513
  • D.R. MacAyeal, E.A. Okal, R. Aster and J.N. Bassis, (2009), Seismic Observations of Glaciogenic Ocean Waves (Micro-Tsunamis) on Icebergs and Ice Shelves, Journal of Glaciolog, (55)190, 193-206
  • Alley, R.B., I. Joughin, H.J. Horgan, T.K. Dupont, B.R. Parizek, S. Anandakrishan, K.M. Cuffey, J.N. Bassis, (2008), A Simple Law for Ice-Shelf Calving (2008), Science, Vol. 322. No. 5906, p. 1344.
  • Bassis, J.N., The Physics of Ice Sheets, (2008), in special International Polar Year edition of Physics Education, 43(4).
  • MacAyeal, D.R., E. Okal, R. Aster, J.N. Bassis, (2008), Seismic and Hydro-Acoustic Tremor Generated by Colliding Icebergs, Journal of Geophysical Research, 113, doi:10.1029/2008JF001005.
  • Bassis, J.N., H.A. Fricker. R. Coleman, Y. Bock, J. Behrens, D. Darnell, M. Okal, J.B Minster, (2008), An Investigation Into the Forces that Drive Ice Shelf Rift Propagation, Journal of Glaciology. 184(54), 17-27. Profiled
  • Bassis, J.N., H.A. Fricker, J.B, (2007), Seismicity and Deformation Associated with Ice Shelf Rift Propagation, Journal of Glaciology, 183(53), 523-536.  Profiled
  • Jansen, V., Coleman, R., J.N. Bassis, (2009), GPS-derived Strain Rates on an Active Ice Shelf Rift, Survey Review, (41)311, p. 14-25.
  • MacAyeal, D.M., E. Okal, J.N. Bassis, et al., (2006), Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in Tropics and Northern Hemisphere, Geophysical Research Letters, 33, doi:10.1029/2006GL027235.
  • Fricker, H.A., N. W. Young, R. Coleman, J. N. Bassis, J.B. Minster, (2005), Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica, Geophysical Research Letters, 32, L02502, doi:10.1029/2004GL021036.
  • Bassis, J. N., R. Coleman, H. A. Fricker, J. B. Minster, (2005), Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica, Geophysical Research Letters, 32, L06502, doi:10.1029/2004GL022048.
  • Fricker H. A., J.N. Bassis, J.B. Minster, D. R. MacAyeal, (2005), ICESat's new perspective on ice shelf rifts: The vertical dimension, Geophysical Reseach Letters, 32, L23S08, doi:10.1029/2005GL025070.
  • Martinez, M., H. Harder, T.A. Kovacs, J.B. Simpas, J.N. Bassis, et al., (2003), OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, Journal of Geophysical Research, 108 (D19), 4617, doi:10.1029/2003JD003551.